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Abstract

Objective. A fundamental goal of the auditory system is to parse the auditory environment into
distinct perceptual representations. Auditory perception is mediated by the ventral auditory
pathway, which includes the ventrolateral prefrontal cortex (vVIPFC). Because large-scale recordings
of auditory signals are quite rare, the spatiotemporal resolution of the neuronal code that underlies
vIPFC’s contribution to auditory perception has not been fully elucidated. Therefore, we developed
a modular, chronic, high-resolution, multi-electrode array system with long-term viability in order
to identify the information that could be decoded from pECoG vIPFC signals. Approach. We
molded three separate tECoG arrays into one and implanted this system in a non-human primate.
A custom 3D-printed titanium chamber was mounted on the left hemisphere. The molded
294-contact yECoG array was implanted subdurally over the vIPFC. ECoG activity was recorded
while the monkey participated in a ‘hearing-in-noise’ task in which they reported hearing a ‘target’
vocalization from a background ‘chorus’ of vocalizations. We titrated task difficulty by varying the
sound level of the target vocalization, relative to the chorus (target-to-chorus ratio, TCr). Main
results. We decoded the TCr and the monkey’s behavioral choices from the ECoG signal. We
analyzed decoding accuracy as a function of number of electrodes, spatial resolution, and time
from implantation. Over a one-year period, we found significant decoding with individual
electrodes that increased significantly as we decoded simultaneously more electrodes. Further, we
found that the decoding for behavioral choice was better than the decoding of TCr. Finally, because
the decoding accuracy of individual electrodes varied on a day-by-day basis, electrode arrays with
high channel counts ensure robust decoding in the long term. Significance. Our results demonstrate
the utility of high-resolution and high-channel-count, chronic yECoG recording. We developed a
surface electrode array that can be scaled to cover larger cortical areas without increasing the
chamber footprint.

1. Introduction

Real-world hearing is a complex computational prob-
lem for two main reasons: (1) auditory stimuli can
simultaneously change along many dimensions, such
as loudness and location, and (2) stimuli of interest
(e.g. the voice of a friend) are often mixed together
with other environmental sounds (e.g. the sound of

© 2020 IOP Publishing Ltd

frothing milk) [1, 2]. Thus, for a listener to interact
efficiently with their environment, they must be able
to selectively attend to stimuli of interest and import-
ance (e.g. your friend’s voice), while simultaneously
ignoring extraneous stimuli (i.e. the frothing milk)
[2-7].

A classic test of real-world hearing is the detec-
tion of an auditory stimulus that is embedded in
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a noisy background [8-12]. For example, normal-
hearing listeners can readily detect and hear a friend’s
voice at a party, even when the background is noisy
due to the voices of other speakers, music, and
clinking glasses. This is often referred to as the
‘cocktail-party problem’ or ‘hearing in noise’ and is
one of the fundamental challenges of the auditory
system [13].

Although the neuronal correlates of hearing in
noise have been studied acutely in a variety of model
species and using many different techniques and
stimulus paradigms [8, 9, 14-24], these prior works
focused on early cortical centers and neglected the
contribution of later regions, like the ventrolateral
prefrontal cortex (VIPFC). The vIPEC is part of the
of the ventral auditory pathway, which is widely con-
sidered to play a substantial role in auditory percep-
tion and cognition [25].

In addition to not understanding vIPFC’s con-
tribution to fundamental tasks like hearing-in-noise,
we only have a rudimentary understanding of how
information is encoded in populations of vIPFC neur-
ons [21, 24, 26—42]. Because of this, we do not have
a good understanding of the spatiotemporal resolu-
tion of the neuronal code that underlies vIPFC’s con-
tribution to perception. The topographic and tem-
poral scale of these neuronal populations has not
been tested because, until recently, it was not possible
to record from large numbers of brain sites simul-
taneously [43]. Even today, such large-scale record-
ings in the cortical auditory system are still very
rare.

In this project, we developed a micro-
electrocorticographic (¢ECoG) recording array in
order to identify the task-related information that
can be decoded from pECoG vIPFC signals. To over-
come some of the challenges of recording from neur-
onal populations and to do so chronically [44-47],
we demonstrate the feasibility of a tECoG array that
provides, to our knowledge, the highest electrode
density and channel count in any non-human prim-
ate study (table 1). The advantage of this technique is
that the array is assembled out of smaller sub-arrays
that are combined into one larger one. Because of
this technique, it is possible to tailor the size, shape,
and electrode density for the particular brain target.
This design also permits the recording chamber to
house electronics that scale vertically as channel count
increases, giving more room for electrode-interface
connections. A water-tight recording chamber design
enables electronics to be permanently implanted on
the animal, to allow for future channel-count scal-
ing. We show that ;ECoG signals from this array
contain multiple sources of information that relate
to a monkey’s performance on a hearing-in-noise
task. We further show how decoding improved as
we increased the number of simultaneously decoded
channels and how the array remained stable after
1 year of implantation.
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2. Materials and methods

2.1. Electrode

Our modular 294-channel 4ECoG electrode array
was built from three separate 98-channel arrays.
These arrays were fabricated using microfabrication
methods in a cleanroom environment at the Shared
Materials Instrumentation Facility at Duke Univer-
sity. The full array was composed of 294 electrode
contacts (229-um diameter) with an inter-electrode
pitch of 610 pm (center-to-center).

The electrode contact size was chosen to match
our previously published results [47, 63, 64]. The
electrode pitch was designed to be as dense as pos-
sible, while fully covering vIPFC with the number of
available channels. A local reference electrode (38.1-
mm long x 200-pm wide) surrounded the contacts
(figure 1(a)). This yielded a total sensing area of
10.4 x 11 mm? with a density ~2.6 sitessmm?”. The
sensing and reference electrode contacts were Cr/Au
(20/250 nm).

2.1.1. Fabrication.

The electrode stack-up is shown in figure 1(b). Sim-
ilar to our previous work [65], the base electrode sub-
strate consisted of a 25 ym Kapton® Polyimide sheet
(Fralock, Inc, Valencia, CA), which was manually
laminated onto a glass slide coated with cured poly-
dimethylsiloxane (PDMS) (Sylgard 184, Dow Corn-
ing, Midland, MI). Using an e-beam metal evaporator
(CHA Industries E-Beam), 20 nm of chrome (Cr) and
250 nm of gold (Au) were deposited onto the Kapton
sheet. S1813 positive photoresist (Shipley Microposit)
was used as a positive mask to wet etch the Au and
Cr layers (Gold Etch TFA, Cr Etchant 9057; Transene,
Danvers, MA). Next, a 6-um thick layer of polyim-
ide (PI 2611, HD Microsystems, Parlin, NJ) was spun
onto the surface of the array and cured. The top
polyimide layer was selectively etched using a Trion
Phantom II reactive ion etcher (RIE). The electrodes
were then removed from the glass substrate. Finally,
a stiffener, which was composed of a 50-um thick
layer of pressure sensitive adhesive (3M467-PSA) and
153-pm thick layer of polyimide, was applied to the
back of each 51-pin zero-insertion-force (ZIF) con-
nector, two for each 98-channel array. We measured
the impedance (@ 1 kHz) of each electrode in saline
solution using a NanoZ system (White Matter LLC,
Mercer Island, WA).

2.1.2. Assembly (molding)

We used biocompatible medical-grade silicone mold-
ing (MDX4-4210, Dow Corning, Midland, MI),
which is similar to the silicone that we used pre-
viously as artificial dura [66, 67]. Using this silic-
one, we combined three separate electrode sub-arrays
together to construct a single uniform high-density
electrode array. This design resulted in a narrow cable
entry point into the recording chamber (figure 1(a)).
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Table 1. 4ECoG comparison table. Comparison between this work and other uECoG studies.

Studies Year Subject Number of Electrodes Spacing (mm) Coverage (mm?) Density (Sites/ mm?)
Hollenberg et al [48] 2006 Rat 64 0.75 36 1.78
Benison et al [49] 2007 Rat 256 0.5 64 4.00
Molina-Luna et al [50] 2007 Rat 72 0.64 27 2.67
Kim et al [51] 2007 NHP 56 1 36 1.56
Rubehn et al [52] 2009 NHP 252 2 2100 0.12
Ledochowitsch et al [53] 2011 Rat 256 0.5 64 4.00
Besle et al [54] 2011 Human 127 10 12700 0.01
Viventi et al [55] 2011 Cat 360 0.5 90 3.60
Pasley et al [56] 2012 Human 64 4 1000 0.06
Khodagholy eral [57] 2015 Rat 64 0.1 1 64.00
Escabi et al [58] 2014 Rat 196 0.25 12.25 16.00
Hotson et al [59] 2016 Human 128 3 1152 0.11
Kellis et al [60] 2016 Human 16 1 16 1.00
Khodagholy et al [61] 2016 Human 240 0.23 840 0.29
Kaiju et al [62] 2017 NHP 96 0.7 4704 0.02
This work 2020 NHP 294 0.61 1144 2.57
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Figure 1. Electrode assembly and fabrication. (a) Molded electrode array with a high-resolution sensing area (10.4 x 11 mm?)
including 294 electrode channels. The red arrow indicates the location of the local reference ring electrode. (b) A 3D cross
sectional schematic of the electrode array. The electrodes were fabricated on top of a 25-pm Kapton Polyimide sheet. 20 nm of
chromium and 250 nm of gold were E-Beam deposited to form the electrode contacts and traces. 6 um of polyimide (PI 2611)
was spin coated onto the device to serve as the top encapsulation layer. The electrode contacts and connector openings were
etched open using RIE. (c) Illustrations of the electrode molding process. 1. PVA glue was applied to a glass slide to secure PVA
tape. Electrode arrays were then laminated onto the PVA tape in order to temporarily hold the electrode sub-arrays for alignment.
The PVA tape also prevented silicone from accidently covering up the electrode contacts during the molding process. 2. A stencil
was placed onto the assembly to check the electrode alignment and to set the thickness of the silicone molding. 3. Well-mixed and
de-gassed silicone was poured onto the mold. 4. A wiper removed the excessive silicone. 5. The silicone cured at room
temperature for 24 h. 6. The assembly was rinsed under tap water to remove the PVA tape and release the molded array.
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Because the silicone also covered the sharp electrode
edge of the thin polyimide, it reduced the possibility
of brain damage during array placement.

The molding process is shown in figure 1(c).
We manually aligned the electrodes on a glass slide
with water-soluble (Polyvinyl alcohol, PVA) tape (3M
5414). The tape prevented the electrode contacts
from being covered by silicone and maintained align-
ment during molding. We designed and fabricated
custom molding and alignment stencils to ensure
that the silicone-molded 294-channel ECoG array
had a uniform shape and thickness. Once the silic-
one cured, the molded electrode array was released
by rinsing it under water. With only a 100-pm
thick coating of silicone molding, the molded array
remained flexible. The functionality of the array
was bend tested to a radius of 2.5 mm using a
glass rod (supplement figure 1 (available online at
stacks.iop.org/JNE/17/046008/mmedia)).

2.2. Recording chamber

Traditionally, recording chambers have been obtained
from commercial vendors. Although these commer-
cial chambers have many benefits, they also have sub-
stantial disadvantages. For example, because these
commercial chambers have a universal design, they
do not fit tightly on the skull—even if manually adjus-
ted during surgery—and consequently, do not fully
integrate with the bone [68, 69]. When a chamber fails
to integrate with the skull bone, it can come loose or
break off, ending the experiment and endangering the
animal [70]. Further, because these manual adjust-
ments take a substantial amount of time during sur-
gery, it increases the length of the procedure, which
increases risk to the animal.

More recently, custom chambers, which fit tightly
on each animal’s skull, are created with 3D-printing
or computer-numerical-control-machining tech-
niques [70-72]. However, because these chambers
are typically designed for penetrating microdrives
rather than surface electrodes, they are not water-
tight. A watertight chamber was essential for this
study because we permanently attached the adapter
PCBs to the chamber.

To address these challenges, we developed a new
type of recording chamber that met our design cri-
teria. This chamber had three major components: (1)
a 3D-printed custom titanium chamber whose base
curvature sat seamlessly on the monkey’s skull, (2) a
molded silicone rubber chamber wall (Sugru, Form-
FormForm Ltd., London, United Kingdom), and (3)
a molded silicone gasket. The wall and the gasket
worked together to form a watertight chamber.

2.2.1. Identification of vIPFC.

vIPFC was initially identified through structural MRI
scans of the monkey’s brain [73-76]. vIPFC is dorsal
of the inferior ramus of the arcuate sulcus. vIPFC
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neurons are functionally identified by their task-
related auditory responses [41, 77, 78]. The left hemi-
sphere was targeted to facilitate comparisons with
previous findings [7, 41, 79-85].

2.2.2. Skull mapping.

To create a custom base that fit the contour of the
monkey’s skull, we first extracted the portion of the
skull MRI data that was located under and near the
potential chamber location. We then performed a re-
mesh step (MeshLab, Visual Computing Lab ISTI-
CNR) that reduced the number of triangles in the 3D
skull model from ~1 million to ~3000. This step bal-
anced the costs associated with long processing times
with the detail needed to produce a realistic model of
skull curvature. Finally, we exported this simplified
skull surface model to Autodesk Inventor (Autodesk
Inc. San Rafael, CA) to complete the chamber design.

2.2.3. Design and fabrication.

With the simplified skull model, we were able to
quickly iterate designs to optimize the structure and
mounting strategy (figure 2). We 3D printed low-
cost plastic test samples, which allowed our sur-
geon to optimize the locations of the bone screws in
advance. These low-cost test samples were made out
of Polylactic Acid (PLA) via the common fused fil-
ament fabrication (FFF) method. The test samples
also allowed test fitting and fine tweaks of the design
before we submitted the design for titanium printing.
We used finite element analysis software simulation
tools (Autodesk Nastran, Autodesk Inc, San Rafael,
CA) to optimize our design parameters (e.g. shape
and wall thickness), which improved the chamber’s
impact resistance.

To simulate a worst-case scenario, instead of
calculating the average impact force, we calculated
the dynamic energy of a free-falling monkey at the
moment when the chamber hits the ground. From the
work-energy principle, the maximum impact force
is: Frax = Zngh, in which m is the mass of the fall-
ing object in kilograms, g is the gravitational acceler-
ation constant (9.8 m s~2), h is the falling distance in
meters, and d is the impact distance in meters.

The impact force on a monkey’s chamber can
be difficult to determine because it depends on how
the chamber hits the ground, (e.g. which part of it
hits the ground, the angle of impact, and if it was
somehow protected). We chose an impact distance
of 6 cm, along with a 1.2-m falling distance, and
a monkey weight of 11.0 kg. This yields an impact
force of ~4300 N. Our simulation found that the
maximum vyield strength was ~700 MPa (figure 3),
when the impact force occurred on the top of the
chamber, which is below the yield strength limit
of ~900 MPa for titanium. Additional simulation res-
ults for impacts on the front, side, and corner of the
chamber are shown in supplement figure 2.
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2. Extract skull surface

1. Target location

3. Design chamber

4. Reconfirm target

Figure 2. General procedure for creating the custom chamber base. 1. Structural MRI data determined the target location and the
corresponding skull location in which to mount the chamber. 2. The target skull surface was extracted and simplified to reduce
the curvature details and processing time. 3. The chamber was then iterated to optimize the design and mounting strategy. 4. The

final chamber design was re-imported back into the targeting software environment to validate placement.

760

600 |

0

Figure 3. Mechanical simulation of free-fall impact force. We optimized the chamber structure to withstand the impact force of a
free-falling NHP. The most vulnerable point of the chamber was the safety stopper tab (red dash square) which prevented the cap
from being over-tightened. When an impact force was applied from the top surface (yellow arrow, ~4300 N), a maximum
pressure of 718.4 MPa (maximum point identified by the simulation software) occurred in the tabs, which is below the yield
strength limit of ~900 MPa for titanium. The simulation results from impact forces in different directions are shown in
supplement figure 2. The impact force distribution in the chamber body over time is shown in movie M1.

Max:718.4

-— = =

We made our chamber watertight by construct-
ing: (1) a custom-molded silicone rubber wall with
a reinforcement stiffener and (2) a silicone-molded
gasket between the titanium chamber base and cap.
The chamber stack-up is shown in figure 4(b).

The silicone rubber wall compressed and
deformed around the electrode to form a watertight
seal. A 3D-printed stiffener (DuraForm PA, 3D Sys-
tem) reinforced the silicone rubber wall and helped it
to retain its shape under pressure. The reinforcement
stiffener was printed using selective laser sintering.
This printing method increased the surface rough-
ness of the stiffener, which, in turn, improved the
adhesion of the stiffener to the silicon rubber.

To seal the gap between the chamber base and cap,
we designed a custom silicone (DuPont MDX4-4210)
gasket. The gasket was compressed by the chamber
cap to seal the chamber. We could replace the gasket
if there was any sign of wear or damage.

To make the silicone gasket, we first applied a
thin layer of a medical-grade biocompatible mold-
release agent (Duraglide MCC-DGF14A, MicroCare
Corp., New Britain, CT) to the surface of the sten-
cil mold. This facilitated removal of the molded gas-
ket after it cured. We next placed well-mixed silicone
in a desiccator for 30 min to remove the air bubbles
trapped during mixing and then poured it into the
mold; we heated the mold to accelerate the curing
process (60 °C for 6 + hours). The silicone rubber
wall was constructed in an analogous manner, using
the same aluminum stencil mold. Detailed molding
steps and the corresponding stencil molds for both
parts are shown in figure 4(a).

We tested the water resistance of the chamber
by placing a water-contact indicator strip (3M 5559)
within a fully assembled chamber and soaking it in
phosphate buffered saline (PBS; pH = 7.4; Qual-
ity Biological, MD) at room temperature. For visual
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assembly steps are shown in movie M2.

Figure 4. Chamber system assembly steps. (a) Left. Molding steps for the silicone rubber wall. (i) Demolding agent was applied to
the aluminum mold. (ii) The mold was assembled, and the stiffener piece was placed at the center of the mold. (iii) The mold was
filled with silicone rubber (Sugru) and excess material was removed using a squeegee. (iv) After curing the mold in an oven

(60 °C, 4 + hours), the molded wall was removed from the aluminum mold and the alignment portion of the stiffener was
broken off. Right. A 3D rendering of the aluminum mold that was used to mold the silicone rubber wall and the silicone gasket.
The molding steps of the silicone gasket were similar to the silicone rubber wall but without the stiffener. Silicone (MDX4-4210)
was used for the gasket. (b) Exploded 3D view of the chamber system. (c) The final chamber on top of a model skull. Detailed

confirmation, we also 3D printed (Transparent Resin
[3D Hubs, Amsterdam, Netherlands] via the Polyjet
method) a clear chamber (supplement figure 3). We
found that, for both the titanium and clear chambers,
the indicator strip remained dry after several days of
soaking.

After validation, the final design (resolu-
tion: £ 100 pm) was 3D-printed in titanium
(TiAlgVy) via direct metal laser sintering (3D Hubs).
A picture of the final chamber is shown in figure 4(c).

2.3. Data acquisition system and in vivo recording
Typically, chamber size increases as the number of
electrodes implanted increases. In this work, although
having hundreds of electrodes, we minimized the
chamber footprint by exploiting a modular stacking
design that used off-the-shelf components. The final
chamber size was 3.5 x 2.7 x 1.8 cm?, including
mounting wings and weighed only 76 g including the
PCBs, cap, gasket, screws, and all other hardware.
Within the chamber, we developed two custom
PCB interface boards that connected the electrode
array to the data-acquisition system. Four 51-pin ZIF
(504070 series, Molex, IL) connectors connected the

level-1 interface board with two of the 98-channel
arrays. Two additional ZIF connectors connected the
level-2 interface board with the third 98-channel
array. The level-1 board was connected to the level-
2 board through two 100-pin high-density stacking
connectors (55909 series, Molex, IL), which passed
196 electrode signals along with multiple reference
signals from the level-1 board to the level-2 board.
The top of the level-2 board included eight Nanostrip
connectors (NSD-36-VV-GS, Omnetics Connectors
Crop.) that interfaced with four 64-channel amplifier
headstages (RHD 2164, Intan Technologies).

With a maximum of 256 channels recorded
from the four 64-channel amplifiers, we shorted the
remaining outer contacts (supplement figure 4) on
the adapter boards to create another local reference
ring that could be used in data analysis. Future designs
could incorporate the amplifier integrated circuits
into each level PCB, enabling all 294 recording elec-
trodes.

Digital data from the Intan amplifiers were trans-
ferred via thin and flexible SPI tethers, and logged
with the OpenEphys system [86] at 20 kS s~!. The
programmable hardware filter settings in the Intan
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Figure 5. tECoG recording system. (a) A 3D rendering of the full system during recording. (b) System block diagram. Two of the
electrode sub-arrays were connected to interface board level-1, and the third sub-array was connected to the interface board
level-2. The two interface boards were connected via two 100-pin stacking connectors that passed 196 electrode channels and the
local references. Eight Nanostrip connectors were used to connect to the Intan headstages during recording. Side views of
interface board levels-1 & — 2 are also shown at the bottom of the panel. An OpenEphys controller recorded from the four Intan
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headstages were set to 0.1 Hz—7.5 kHz. The system
diagram is shown in figure 5.

2.4. Chamber implantation

Prior to implantation, the electrodes were connected
to the interface PCBs, and the level-1 and level-2 PCBs
were connected together. After this assembly step, the
PCBs were conformally coated (Bondic, Laser Bond-
ing Technology Inc, Ontario, Canada) to protect the
circuits from potential water ingress and improve reli-
ability. The electrode and PCB assemblies were gas
sterilized (ethylene oxide; Duke University Medical
Center).

The University of Pennsylvania Institutional
Animal Care and Use Committee approved all of the
surgical and experimental protocols. All surgical pro-
cedures were conducted using aseptic surgical tech-
niques, during which the monkey was under general
anesthesia.

In brief and following from our previous work
[70], the scalp and the periosteum were incised
along the midline. After stereotactically identifying
the vIPFC (figure 6(a)) [75], we used a piezoelectric
drill (Synthes) with a small round cutting burr to per-
form a craniectomy. Next, after the dura was incised
and reflected, the 4#ECoG array (which was attached
to the titanium chamber) was placed on the brain sur-
face (figure 6(b)). The dura was then overlain and the
calvarium was replaced. The recording chamber was
attached to the skull via Ti bone screws; the screws
were inserted through holes in the legs of chamber.
The legs and edges of the craniectomy were protec-
ted with Geristore (DenMat). Finally, the cover was
placed and secured on the recording chamber, and the
skin edges were relaxed and sutured over the chamber.

2.5. Behavioral task
The hearing-in-noise task tested a monkey’s ability
to detect a target vocalization that was embedded in

a background chorus of vocalizations. 400-700 ms
after the monkey grasped a touch-sensitive lever, we
presented a target vocalization that was embedded in
a background chorus. Following onset of the target
vocalization, the monkey had 600 ms to move the
lever to report hearing the vocalization.

The target vocalization was a single exemplar of
a coo (duration: 400 ms) that was recorded from
an unknown conspecific [87, 88]. The background
chorus was created by superimposing 3040 different
vocalizations, which were also from unknown con-
specifics, at random times to create a 6600-ms stim-
ulus; on a day-by-day basis, we created new tokens
of this background chorus. Because we minimized
the amplitude troughs of this stimulus mixture, we
reduced the possibility that the monkey could detect
the target vocalization if it occurred within an amp-
litude trough of the background chorus [21, 89]. The
sound level of the target vocalization was varied rel-
ative to the level of the background chorus (65 dB
SPL): the target-to-chorus ratio (TCr) was nominally
between —5 and + 15 dB.

The onset of the target vocalization was drawn
from an exponential distribution [90] (min: 1200 ms;
mean: 4200 ms; max: 6100 ms). This strategy encour-
aged the monkey not to anticipate target onset [90].
On some trials, however, the vocalization chorus ter-
minated without a target vocalization. These were
catch trials.

The hearing-in-noise task was a detection task. A
hit occurred when the target vocalization was presen-
ted and the monkey released the lever within 600 ms
of target onset (i.e. the response-time window). A
miss occurred when the vocalization was presented
but the monkey did not release the lever within the
response-time window. A false alarm occurred when
the monkey released the lever when the target vocal-
ization was not presented. A correct rejection occurred
when the monkey held onto the lever throughout
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Figure 6. Targeted location of vIPFC and image of the
implanted pECoG array. (a) Schematic of a rhesus macaque
brain. Based on MRI imaging, the grey square shows the
region of the prefrontal cortex that we targeted as the vIPFC
[77,78, 82, 83]. D: dorsal; P: posterior. (b) Image of the
implanted uECoG array at the time of surgical
implantation. The chamber with the electronics is shown at
the top of the picture. At the bottom of the image, the
craniectomy and the electrode array that is lying on the
surface of the vIPFC is visible. This image was obtained
prior to overlaying the dura on the array and brain surface.

a catch trial. Monkeys were rewarded on hit and
correct-rejection trials.

2.6. Data analysis

To determine whether vIPFC activity contained
information that correlated with different TCr values
(—5,0,5,10,and 15 dB) and the monkey’s choices, we
conducted two classification analyses on the tECoG
signal. In one classifier, we tested the degree to which
we could decode different TCr values. In this ana-
lysis, we used pECoG signals generated from hit tri-
als only of the hearing-in-noise task to ensure that we
did not conflate behavioral choice with TCr. In the
second classifier, we tested the degree to which we
could decode the monkeys’ behavioral choices (hits,

C-H Chiang et al

misses, false alarms, and, in a subset of sessions, cor-
rect rejections), independent of TCr. We conducted
these classification analyses on the puECoG broad-
band signal, which is the 0.1 Hz—7.5 kHz signal that
was recorded on the OpenEphys system via the Intan
headstages.

For each classification analysis [24, 91-94], we
constructed an N-dimensional population response
vector that constituted the pECoG signals from a pop-
ulation of N different electrodes to R repetitions of S
conditions (i.e. each TCr value or behavioral choice).
We used a Support Vector Machine (SVM) to classify
these data, and each classification underwent a k-fold
cross-validation procedure. This procedure divided
the training set of 4ECoG data into k smaller subset
(i.e. folds) and, in an iterative fashion, one subset was
tested by a model trained on the remaining k-1 sub-
sets.

Because different numbers of trials might have
occurred for different conditions (e.g. each TCr
value), we subsampled our data to ensure that we had
the same number of trials for each condition [24, 95].
For each electrode, we calculated the mean pECoG
amplitude and its variance that was generated over
the entire duration of the target vocalization or the
equivalent period prior to lever release for false alarm
trials. To control for potential bias due to electrode-
by-electrode differences in the pECoG signals, we z-
scored the yECoG signal, relative to a 750-ms baseline
period preceding chorus onset.

To test how well the pECoG signals discrimin-
ated between the different TCr values or the mon-
key’s choices, we implemented a linear-readout pro-
cedure. Because both the TCr and the choice classific-
ations had more than two conditions (e.g. we had 5
different TCr values), we implemented a ‘one-versus-
all’ classification. In this method, we built a classi-
fier for each TCr value and trained each of them to
discriminate between one particular TCr value versus
all of the remaining TCr values. Using the test data,
we identified the classifier that maximized perform-
ance (i.e. percent correctly decoded) and report aver-
age performance of this ‘one-versus-all’ classification
over 10 iterations with randomly picked channels for
each decoding group (number of channels). An ana-
logous procedure was conducted to analyze choice.
All classifiers were constructed using a SVM pro-
cedure that was implemented in the MATLAB pro-
gramming environment and used the LibSVM lib-
rary [96] with a coarse-grained search that optimized
the LibSVM parameters (e.g. cost function) for each
classifier.

Because single-electrode connectivity varied on a
day-by-day basis, we removed electrodes with high
impedances (i.e. > 1 M at 1 kHz). Those electrodes
with impedances < 1 M) were used to construct
the N > 1 dimensional population response vector;
we simultaneously examined 1, 2, 4, 8, 16, 32, 64—
127, and > 128 channels. Because these decoding
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analyses were independently conducted on a session-
by-session basis, differences in the number of elec-
trodes per session did not affect the outcome of our
decoding analyses. We plot each decoding session
independently to maximize transparency regarding
potential session-by-session differences.

3. Results

The pECoG electrode array was implanted in June
2017. The recordings for this study began in Novem-
ber 2017 and continued for ~6 months. As of early
2019, the electrode was still implanted and was still
viable.

Monkey A (N = 9 behavioral and recording ses-
sions reported in this study) reliably reported the
presence of the target stimulus (i.e. a vocalization)
that was presented simultaneously in a background
‘chorus’ of vocalizations (figure 7, top). Because we
focused on TCr values above threshold, the monkey’s
performance was essentially constant across values of
TCr. The monkey’s mean hit rate at TCr = — 5 was
74% (s.e.m. = 6%), and at TCr = 15, it was 72%
(s.e.m. = 79%). Their false-alarm rate was also fairly
constant across TCr values: 17% (s.e.m. = 7%) at
TCr = — 5 and 20% (s.e.m. = 7%) at TCr = 15.

The middle panel of figure 7 replots the monkey’s
performance as a function of d’. d” is a non-parametric
measure of the monkey’s sensitivity in detecting the
target stimulus by incorporating both the hit rate and
the false-alarm rate [97]. A d’ value of 0 implies that
the monkey could not discriminate between the target
and the background chorus. At the lowest TCr value
of —5, the mean d’ value was 2.4 (s.e.m. = 0.7). At
the highest TCr value of 15, the mean d’ value was 1.7
(s.eem. = 0.4).

The mean response time (i.e. the time between
stimulus onset and the onset of lever movement; fig-
ure 7, bottom) was also fairly consistent across differ-
ent values of TCr: 209 ms (s.e.m. = 23) at TCr= — 5
and 231 ms (s.e.m. = 22) at TCr = 15. Taken together,
these behavioral values suggest that the monkey could
report the presence of the target vocalization in the
background chorus of vocalizations.

Figure 8 shows the evoked response potential
(ERP) that was averaged across all of the uECoG elec-
trode channels (with impedances < 1 M{2 at 1 kHz)
and across all sessions. On hit trials (top row), we
found that the target vocalization modulated the aver-
age ERP response. That is, we saw a deflection in
the ERP following onset of the target vocalization
(which occurred at time = 0). In contrast, on miss
trials (second row), even though the target vocaliz-
ation was presented, the average ERP response was
flat. That is, the target vocalization did not modu-
late, on average, the tECoG signal. The average ERP
was also modulated by false-alarm trials (third row),
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Figure 7. Psychophysical performance on the
hearing-in-noise task. (Top) Average hit rates and
false-alarm rates averaged across all recording sessions as a
function of TCr. The data are replotted as a function of d” in
the middle panel. The bottom panel plots the average
response time across all recording sessions as a function of

TCr. Response time is the time from stimulus onset until
lever movement.

whereas the average ERP on correct-rejection trials
(fourth row) was flat.

Because these data suggest that different beha-
vioral choices (hits, misses, false alarms, and cor-
rect rejections) modulated the average ERP signal, in
the follow sections, we use a classification analysis to
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Figure 8. Average auditory evoked-response potential (ERP). The normalized (z-scored) average auditory ERP across all
recording channels and across all sessions is plotted as a function of behavioral choice (rows) and TCr (columns). The average
ERP is plotted in red. The standard deviation is the grey shading. FA; false alarm. CR; correct rejection. Time is plotted relative to
stimulus onset (t = 0). The dotted horizontal line indicates voltage = 0.

quantify the degree to which we could decode beha-
vioral choice as well as TCr values from the uECoG
signals.

As noted in Materials and Methods, there was
tremendous day-to-day variability in the decoding
of individual electrodes, which we attribute to poor
connections at the Nanostrip connectors that were
plugged and unplugged each day (see Discussion for
more details). This variability can be seen in fig-
ure 9, which depicts the single-channel decoding
accuracy of each yECoG electrode after 5 months
of implantation and after 11 months of implanta-
tion. As can be seen, this variability was not sta-
tionary: the decoding pattern from 5-months post-
implantation was quite different than that seen at
11 months. Nonetheless, for a large proportion
of these single electrodes, single-electrode decod-
ing accuracy was above chance (i.e. 25% [4 beha-
vioral choices: hit, miss, false alarm, and correct
rejection]).

As an index of this day-to-day variability, we iden-
tified, for each recording session, those electrodes that
were in the top 20th percentile of decoding accuracy.
We then generated a heat map reflecting the number

of times that each pECoG electrode was part of this
top 20th percentile. Figure 10 shows this heat map.
In our first decoding analysis (figure 11(a)), we
decoded TCr as a function of the number of elec-
trode channels. Although, the decoding of N = 1
channels was somewhat variable, we found that
the median performance of each recording session
was above chance levels (i.e. because there were
5 TCr values [—5, 0, 5, 10, and 15 dB], chance
performance was at 20%). Across all sessions, for
N = 1 channels, the median decoding accuracy for
the broadband signal was 27% (interquartile range
[IQR]: 25%—30%). This median broadband value
was greater than chance performance (Wilcoxon sign-
rank test; Hp: median value is equal to chance;
p < 0.000001). As we decoded more channels, the
decode accuracy increased from a median value of
27% for N = 1 channels to a median value of 36%
(IQR: 33%—41%; p = 0.002) when we combined the
N = 64 4+ and N = 128 + channels (we combined
across these channel counts because we could not cal-
culate N = 128 + decoding for all sessions; see fig-
ure 11). Overall, we found that as we increased the
number of channels (N = 1,2,4,16,32,64,64-+,128+),
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Figure 9. Individual channel decoding accuracy. (a) The locations and spatial configuration of the electrodes used in the decoding
analyses are highlighted by the red square. (b) Single-channel decoding (classification) accuracy of the ECoG array after (left)

5 months and (right) 11 months implantation. Each square represents the classification decoding accuracy of a single electrode;
see scale legend next to each panel. Electrodes colored black had impedances > 1MS2 at 1 kHz and were removed from the
analysis. In this figure, we show the accuracy of a classifier trained to decode four different behavioral choices; chance
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Figure 10. Heatmap of the channels that were in the top
20th percentile of decoding accuracy. The heat map,
corresponding to the same electrodes in figure 9(a), shows
the number of times (see color bar at right) that each
HECoG recording channel, which is represented by a
square, contributed to the 20th percentile. Values were
calculated across all sessions and across both types of
decoding (TCr and behavioral choice).

the median decoding accuracy increased with channel
number (Kruskal-Wallis test; HO: median difference
between decoding accuracy is the same p < 0.000001).

The decoding of behavioral choice is shown in
figure 11(b). Across all sessions, the median decod-
ing accuracy for the broadband signal was 59% (IQR:
50%-64%) for N = 1 channels. For a combination
of N = 64 4+ and N = 128 + channels, the median
decoding accuracy was 76% (IQR: 72%—78%). Both
of these median values were above chance perform-
ance (Wilcoxon sign-rank test; Hy: median value is
equal to chance; p = 0.002, both). We also observed
that, as we increased the number of channels from
N =1 to N = 128 +, we found an increase in
decoding accuracy (Kruskal-Wallis test; Hy: median
difference between decoding accuracy is the same;
p <0.000001).

In general, the decoding accuracy was relatively
constant over the ~1-year time period of study with
some notable exceptions (e.g. session 321). Nonethe-
less, we tested whether we could identify system-
atic changes that occurred over this time period.
One possibility is that the pECoG electrode array
degraded over time or had some other idiosyncratic
fluctuations in the function of the electrode array.
To address this question, we replotted the decoding
accuracy of the array for behavioral choice as a func-
tion of time from implantation (figure 12(a)) for the
broadband data. Over an approximate 1-year period
(relative to surgical implantation), we could not
identify a reliable monotonic decline or improvement
in decoding accuracy for N = 64 + channels (Spear-
man correlation; Hy: no monotonic relationship
between decoding accuracy and date of recording ses-
sion; p = 0.33, p = 0.09). A second possibility is
that the impedance of the electrode changed over
time. As seen in figure 12(b), we could not identify
any appreciable decrease or increase in the average
impedance of the 4ECoG channels. Another possib-
ility is that this variability reflects the behavior of the
monkey: that is, the session-by-session fluctuations
in the monkey’s behavior was reflected in session-
by-session fluctuations in decoding accuracy. How-
ever, we could not find evidence for this possibil-
ity: the broadband decoding accuracy of behavioral
choice (TCr) did not correlate with the monkey’s hit
rate, false-alarm rate, or d’ values (Spearman correla-
tion; Hy: no monotonic relationship between session-
by-session decoding accuracy and behavior; all p
values >0.05).

In our final analysis, we asked whether the spatial
organization of the 4ECoG recording channels on the
array affected decoding accuracy. This question was
motivated by the observation that with as fewas N =1
randomly selected electrodes, we could decode TCr
and behavioral choice at better than chance levels.

To explore this question, we conducted another
series of analyses in which we sampled over different
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Figure 11. Population decoding accuracy of the pECoG array. Each panel shows the decoding (classification) accuracy of the
nECoG array for (a) TCr and (b) behavioral choice as a function of the number of simultaneously decoded channels. Data points
show the mean decoding accuracy. Error bars represent the standard deviation of the mean. Different colors represent
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spatial extents of the array (figure 13). We first, like
above, used all electrodes with impedances <1MX¢)
at 1 kHz. We tested the decoding accuracy of ‘low,
‘mid;, and ‘high’ density configurations of the elec-
trode array. ‘Low’ density refers to simultaneously
decoding using 4 electrode channels with a nearest
neighbor of >6. This effectively means that elec-
trodes are separated >3.05 mm; as a reminder, the
inter-electrode pitch is 610 pm. ‘Mid” density refers
to simultaneously decoding using 12 electrodes with
a nearest neighbor of > 3. ‘High’ density refers to
simultaneously decoding using 24 electrodes with a
nearest neighbor of 1. Each decoding group (spatial
density) was iterated 20 times with a random selec-
tion of given number of channels and density. Under
these testing methods and behavioral task, we found
that sample density did not affect decoding accur-
acy. That is, as the sampling density increased, the
median decoding accuracy was the same (Kruskal-
Wallis test; Hy: median difference between decod-
ing accuracy is the same; p = 0.9). However, the
high-density array could be used to improve decod-
ing accuracy through optimized channel selection.
We found that, under the same testing methods with
figure 11, if we only considered individual channels
with decoding performance in the top 20th percent-
ile, decoding accuracy improved dramatically (figure
14). For N = 16 + channels, the median decoding
accuracy for TCr was 67% (IQR: 61%-72%) (figure
14(a)) in comparison to 36% for N = 64 + chan-
nels that were chosen randomly (figure 11(a)). Sim-
ilarly, the median decoding accuracy for choice was
88% (figure 14(b)) in comparison to the 76% for
N = 64 + channels (figure 11(b)).

4, Discussion

We developed a modular recording system that can
scale to record larger channel counts without increas-
ing the footprint of the implant. To our know-
ledge, this is also the first demonstration of long-
term recording from a non-human primate from a
1ECoG array (electrode pitch <1 mm) with hundreds
of channels. Utilizing silicone molding, we combined
the sensing area of three thin-film sub-arrays to form
a uniform high-resolution tECoG array. This array
contains 294 channels and covered 10.4 x 11 mm?.
The modular approach not only allowed customiz-
ations of electrode size, shape, and density for the
targeted brain area but also allowed the acquisition
interface to expand vertically instead of horizontally,
which minimizes the implant footprint. In addition,
this modular approach could expand and scale to
record over a thousand channels with larger brain
coverage by stacking more PCBs and molding more
electrodes together. Although we found that having
a large number of electrodes in the array was more
important than the density (see figures 11 and 13), the
two are related: a large number of electrodes essen-
tially requires high density.

We also developed a design approach for cus-
tom 3D-printed titanium recording chambers that
are watertight, optimized for surface arrays, and are
individually mated to the skull of each animal and
recording target. Unlike penetrating microdrives that
rely on penetrating through a combination of silic-
one grease, silicone sealant, and Silastic membrane
to prevent fluid ingress [98], surface electrodes typ-
ically have a flexible cable, which is thin but wide,
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Figure 12. Population decoding accuracy and impedance of
the pECoG array as a function of time. (a) Decoding
accuracy of behavioral-choice data from

64 + simultaneously decoded channels. Data are organized
as a function of time. (b) Impedance of the electrode
contacts over the duration of the implant. The mean
impedance is plotted in red and the shaded area represents
the standard deviation of the impedances. Electrodes with
impedances >1MS2 at 1 kHz were excluded from the
analysis. Electrode impedances were measured more
frequently than behavior.

which cannot penetrate through these sealant layers.
To achieve a watertight seal, we developed a mold-
ing technique that generates a highly customizable
silicone rubber wall that compresses and deforms
around the electrode cable to seal the electrode entry
point. We also created a silicone gasket to seal the
gaps between the chamber cap and base. This design
approach can be easily applied to all surface array
implants and allows the PCBs within the chamber to
be upgradable to add additional capabilities such as
recording and stimulation.

When we used the 4ECoG array to decode dif-
ferent task parameters, we had two major findings.
First, there was substantial day-to-day variability in
the decoding accuracy of each electrode. We attribute
this variability to poor connections in the Nanostrip
connectors between the implant PCBs and the record-
ing headstages (Intan Technologies, Inc). We have
not observed this variability in prior studies that
did not utilize Nanostrip connectors [47, 63, 64].
Nonetheless, when we examined multiple electrodes

13

C-H Chiang et al

Behavioral Choice

100
R 80 ]
>
Q
s
3 60r
Q
< 1
5 ——143
= 40r 168
0 —§—170
= 171
b —8—175
S 20r —§—188
o —3—191
210
—$—321
Low Mid High

Channel Density

Figure 13. Decoding (classification) accuracy of behavioral
choices as a function of electrode density. The thin lines
represent performance from different recording sessions.
Different colors indicate the different sessions; see legend.
The thick black line represents mean performance across all
sessions. Error bars represent the standard deviation of the
mean. ‘Low’ density refers to simultaneously decoding 4
electrode channels with a nearest neighbor of >6. This
effectively means that electrodes were separated >3.05 mm;
as a reminder, the inter-electrode pitch was 610 pm. ‘Mid’
density refers to simultaneously decoding 12 electrodes
with a nearest neighbor of >3. ‘High’ density refers to
simultaneously decoding 24 electrodes with a nearest
neighbor of 1.

simultaneously, we found that we achieved signific-
ant decoding accuracy that was maintained for over
300 d. The degree to which these differences reflect the
information being decoded, the uECoG array itself,
and/or the brain area under investigation is unclear.
Further work is needed to clarify this issue. Second,
with our behavioral task, we found that, whereas
channel number did significantly improve decoding
accuracy, the specific spatial distribution of the chan-
nels (figure 13) did not, in general, affect decoding
accuracy, which was not consistent with our original
expectation. Nonetheless, we found that when we
decoded TCr and behavioral choice, a high-density
array could improve the decoding accuracy through
optimized channel selection (figure 14(a)). The effect
of increasing the number of channels (compare N =1
and N = 16 +, figure 14(a)) was more dramatic with
optimized channel selection. This suggests that, at
least in the vIPFC, there is a benefit from using a high-
resolution electrode array.

From a neuroscience perspective, this study con-
tributes substantially to our knowledge of the vIPFC.
First, we do not have a full understanding of the
vIPFC’s contribution to perception and behavior. Is
it low-level stimulus information or higher-level per-
ceptual information [78, 99-102]¢? Here, we found
that the uECoG signals, which are surface electrical
brain potentials, coded both types of information:
sensory (TCr) and perceptual (choice). The basis
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Figure 14. Population decoding accuracy of the uECoG array when only using channels in the top 20th percentile of individual
channel decoding. Each panel shows the decoding (classification) accuracy of the ECoG array for (a) TCr and (b) behavioral
choice as a function of the number of simultaneously decoded channels. Solid lines show the mean decoding accuracy. Error bars
represent the standard deviation of the mean. Different colors represent performance from different recording sessions, the color
legend indicates the recording day post implantation. In each panel, the dashed horizontal line illustrates chance performance.

for the encoding of this information can be seen
in the averaged ERP traces that are shown in fig-
ure 8. In this figure, it is clear that there is a dis-
tinct relationship between behavioral choice and the
ERP signature. Importantly, for both false-alarm and
correct-rejection trials, because the target vocaliza-
tion was not presented, the differential modulation
on these two trials types cannot be attributed trivially
to different stimulus conditions. The relationship
between different TCr values was less obvious in the
ERP traces than it was for behavioral choice. Con-
sistent with this observation, the decoding accuracy
for TCr values was generally less than the decod-
ing accuracy for behavioral choice (figure 11). Inter-
estingly, when we randomly select 128 + channels
of electrodes (figure 11(a)), the decoding accuracy
of TCr was less than if only choosing the best per-
forming 16 + electrodes (figure 14(a)). This seems
to suggest that sensory information in vIPFC is
rather focal and would be hard to find with a low-
density array. This rich and diverse quality of inform-
ation has tremendous potential for future studies
that would utilize vIPFC, or more generally PFC,
1ECoG signals, as part of a brain-machine interface
(BMI).

Unlike traditional BMIs that typically subsample
channels for the purpose of reducing power usage of
an implanted device, we found that optimizing the
channel selection could also improve decoding accur-
acy (figures 11 and 14). With a high-density array, it
might make sense to subsample channels based on the
current task needs, just like the brain may not read-
out all neurons (channels) equivalently [24]. From a
neuroscience perspective, channel selection may very
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well be similar to a downstream population of neur-
ons that reads out only the most informative neur-
ons [26, 103]. For example, those neurons whose fir-
ing rate was modulated to the greatest extent (and/or
most reliably) by different values of choice, TCr, or
only those neurons whose tuning properties matched
the frequency content of the target vocalization [39,
104-106]. As shown in figures 11 and 14, when
we only select the top 20th percentile channels for
decoding, the decoding accuracy was boosted in both
TCr and choice. This finding supports future work
aimed at exploiting high-channel number arrays:
implanting a large number of electrodes and then
selectively choosing the best electrodes to use for
decoding would enable higher performance than a
lower-density array.

Finally, another point to consider when optim-
izing decoding accuracy is the time interval under
consideration. Here, we used the mean value of the
uECoG amplitude, which was generated over the
entire duration of the target vocalization. Instead, we
could have broken this duration up into smaller inter-
vals and tested whether this ‘temporal’ information
could have improved decoding accuracy and utilized
a broader swath of channels. Indeed, in the audit-
ory cortex, the timing of extracellular spiking activity
contains significant information regarding the loca-
tion of a sound source [35-38].

5. Conclusion
We developed a new high-resolution and high

channel-count surface electrode array that can
be scaled to cover larger cortical areas without
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increasing the chamber footprint. Further, we
demonstrated the utility and robustness of this high
channel-count, high-resolution chronic #ECoG array
by finding that both sensory and perceptual inform-
ation can be decoded from vIPFC pECoG signals.
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