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Christison-Lagay KL, Bennur S, Cohen YE. Contribution of
spiking activity in the primary auditory cortex to detection in noise. J
Neurophysiol 118: 3118–3131, 2017. First published August 30,
2017; doi:10.1152/jn.00521.2017.—A fundamental problem in hear-
ing is detecting a “target” stimulus (e.g., a friend’s voice) that is
presented with a noisy background (e.g., the din of a crowded
restaurant). Despite its importance to hearing, a relationship between
spiking activity and behavioral performance during such a “detection-
in-noise” task has yet to be fully elucidated. In this study, we recorded
spiking activity in primary auditory cortex (A1) while rhesus monkeys
detected a target stimulus that was presented with a noise background.
Although some neurons were modulated, the response of the typical
A1 neuron was not modulated by the stimulus- and task-related
parameters of our task. In contrast, we found more robust represen-
tations of these parameters in population-level activity: small popu-
lations of neurons matched the monkeys’ behavioral sensitivity. Over-
all, these findings are consistent with the hypothesis that the sensory
evidence, which is needed to solve such detection-in-noise tasks, is
represented in population-level A1 activity and may be available to be
read out by downstream neurons that are involved in mediating this
task.

NEW & NOTEWORTHY This study examines the contribution of
A1 to detecting a sound that is presented with a noisy background. We
found that population-level A1 activity, but not single neurons, could
provide the evidence needed to make this perceptual decision.

auditory cortex; rhesus monkey; hearing in noise; behavior

HEARING IN NOISE is one of the fundamental challenges for the
auditory system and is one that normal-hearing listeners can
easily perform (Bronkhorst 2000; Bronkhorst and Plomp 1992;
Moore et al. 2014; Narayan et al. 2007; Shetake et al. 2011).
For example, listeners can readily hear a friend’s voice at a
party, even in a noisy background filled with the voices of
other speakers, music, and clinking glasses. In visual neuro-
science, an analogous problem is referred to as “foreground-
background segregation” (Pomeranz and Kubovy 1986).

Neural correlates of hearing in noise have been identified
throughout the central auditory system (Bar-Yosef and Nelken
2007; Delgutte and Kiang 1984; Giraud et al. 1997; May et al.
1998; Mesgarani et al. 2014; Narayan et al. 2007; Schneider

and Woolley 2013; Scott and McGettigan 2013; Shetake et al.
2011; Wong et al. 2008). Yet, to our knowledge, the direct
relationship between the spiking activity of individual cortical
neurons and the behavioral reports of listeners detecting sounds
in background noise is unknown. In this study, we partially
filled this knowledge gap by recording A1 spiking activity
while monkeys detected a target stimulus that was presented
with a noisy background.

We targeted A1 because it is situated at the beginning of the
ventral auditory pathway. Auditory perception is thought to be
mediated by the neural computations in this pathway, which
includes A1, belt and parabelt regions of the auditory cortex,
and the ventrolateral prefrontal cortex (Bizley and Cohen 2013;
Rauschecker and Scott 2009; Romanski 2007; Tsunada et al.
2016). Work from our group has shown that spiking activity in
the auditory cortex provides sensory evidence for a perceptual
decision but does not seem to correlate directly with behavioral
choice (Tsunada et al. 2011, 2012, 2016), whereas prefrontal
spiking activity is modulated by behavioral choice (Lee et al.
2009; Russ et al. 2008b). In contrast to this work from our
laboratory, important work from other groups has identified
choice-related modulations in both spiking activity and in field
potentials in the primary auditory cortex (Bizley et al. 2013;
Niwa et al. 2012b, 2013), consistent with a broader literature
indicating that A1 has an important role in perception and
behavior (King and Nelken 2009; Sutter and Shamma 2011).

To further understand A1’s contribution to perception and
behavior, we recorded spiking activity from A1 while monkeys
reported (i.e., detected) the presence of a “target” stimulus (i.e.,
a tone burst) that was presented with a background of comodu-
lated broadband noise. It is worth noting that this study differs
from a related study by Sutter and colleagues (Johnson et al.
2012; Niwa et al. 2012a, 2012b), who tested the neural corre-
lates of a monkey’s ability to detect whether or not a noise
burst was amplitude modulated. In contrast, the focus in our
current study was on the ability of a listener to detect an
unmodulated tone in a modulated noise background. We found
that the spiking activity of the median A1 neuron was not
modulated by the stimulus- and task-related parameters of our
task. Instead, we found more robust representations of these
parameters when we considered population-level A1 spiking
activity: small populations of A1 neurons mirrored the behav-
ioral sensitivity of the monkeys. Together, these findings are
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consistent with the hypothesis that the sensory evidence, which
is needed to detect a target stimulus in a noisy background, is
represented in population-level A1 activity and may be assess-
able by downstream neurons that are involved in mediating this
task.

MATERIALS AND METHODS

The University of Pennsylvania Institutional Animal Care and Use
Committee approved all experimental protocols. All surgical proce-
dures were conducted under general anesthesia, using aseptic surgical
techniques.

Experimental Chamber

Behavioral training and neural recording sessions were conducted
in a radiofrequency (RF)-shielded, darkened room with sound-absorb-
ing walls. During each session, a male monkey [Macaca mulatta;
monkey S (age 12 yr) or monkey A (age 8 yr)] was seated in a primate
chair in the center of the room. A calibrated speaker (model MSP7;
Yamaha) was placed in front of the monkey at a distance of 1.5 m
and at eye level. A touch-sensitive lever was attached to the
primate chair; the monkey released the lever with his right hand to
indicate his behavioral report. Auditory stimuli were synthesized
using MATLAB (The MathWorks) and the RX6 digital-signal-
processing platform (TDT). Auditory stimuli were transduced by
the Yamaha speaker.

Identification of A1

From MRI images of each monkey’s brain, A1’s anatomical
location on the surface of the superior temporal gyrus (monkey S, left
hemisphere; monkey A, left hemisphere) was identified using the
Brainsight (Rogue Technologies) software package (Fig. 1). A1 was
further defined by its auditory-response properties (e.g., response
latency and frequency-tuning bandwidth) (Camalier et al. 2012; Fu et
al. 2004; Kajikawa et al. 2005; Kikuchi et al. 2010; Massoudi et al.
2015; O’Connell et al. 2014; Recanzone et al. 2000; Werner-Reiss and
Groh 2008).

Auditory Paradigms and Stimuli

In the passive-listening paradigm, we recorded A1 spiking activity
while monkeys listened passively to different frequency tone bursts
(Tsunada et al. 2016). From the recorded spiking activity, we calcu-
lated the best frequency of an A1 recording site. As described below,
the best frequency of each recording site was integrated into the
target-in-noise task. The target-in-noise task tested the ability of a
monkey to detect a “target” stimulus that was presented with a noisy

background. Further details regarding these tasks and stimuli can be
found below.

Passive-listening paradigm. A monkey listened passively to tone
bursts (100-ms duration with a 5-ms cos2 ramp; 50–80 dB SPL;
400-ms inter-tone-burst interval) with different frequencies (0.5–8.0
kHz in 1/32-octave steps). The sound level and the frequency of the
tone bursts were presented in a random order. The monkeys did not
receive any juice rewards or any other behavioral feedback during the
passive-listening paradigm. From the collected neural data, we calcu-
late the site’s best frequency. The best frequency was the frequency
value, at the lowest sound level, that elicited a reliable response.

Target-in-noise task. In the target-in-noise task (Fig. 2A), there
were two types of trials: “target in noise” and “noise only.” The
behavioral requirements of the noise-only trials were different from
those of the target-in-noise trials. Both trials started with a monkey
grasping the touch-sensitive lever. In target-in-noise trials, we next
presented the target stimulus concurrently with the noise stimulus.
The monkey was required to maintain his grip on the lever during
presentation of this target-in-noise stimulus and release it within 750
ms of stimulus offset. In noise-only trials, we first presented only the
noise stimulus. The monkey was required to maintain his grip on the
lever during presentation of this noise-only stimulus and for an
additional 750 ms. Next, we presented a “respond” stimulus (a 65-dB
SPL tone burst at the site’s best frequency), which signaled the
monkey to release the lever. We presented the respond stimulus to
ensure that the monkey had to perform an action (i.e., release the
lever) on every trial to get a reward and could not simply hold the
lever to get a reward (see Trial outcomes and reward structure). Also,
for both trial types, the monkeys were only allowed to release the
lever after stimulus onset. Consequently, this was not a reaction-time
task.

The target stimulus was a tone burst (750-ms duration; 5-ms cos2

ramp) that was presented at the best frequency of each recording site
(or average best frequency if multiple neurons were isolated from a
single recording penetration). The noise-only stimulus was comodu-
lated broadband noise (0.1–16 kHz); this frequency range exceeds the
range of monkeys’ best hearing (Pfingst et al. 1975). Comodulated
noise was generated by multiplying unmodulated noise with a
20-Hz sinusoidal envelope (Fig. 2B) (Las et al. 2005; Nelken et al.
1999); this stimulus is equivalent to 100% sinusoidally amplitude
modulated noise. The phase relationship between the target and
noise-only stimulus was constant. The modulation phase was the
same on every trial, but we used fresh noise tokens on every trial.
The overall power of the noise-only stimulus was 65 dB SPL
(Narayan et al. 2007).

During target-in-noise trials (Fig. 2A), we varied the sound level of
the target stimulus in 5-dB steps between 60 and 85 dB SPL. As a
result, the “target-in-noise ratio” (TNR) was between �5 and �20
dB. This range of sound levels and TNR values was kept constant
across all recording sessions. During noise-only trials (Fig. 2A), the
noise-only stimulus, as noted above, was presented at 65 dB SPL.

Trial outcomes and reward structure. During target-in-noise trials,
if the monkey released the lever within 750 ms of offset of the
stimulus (median release time: 390 ms), the monkey received a juice
reward; this constituted a “hit.” If the monkey did not release the lever
within 750 ms, this constituted a “miss.” During noise-only trials, if
the monkey maintained his grip on the lever through the noise and
released the lever within 750 ms of offset of the respond stimulus, he
received a reward; this constituted a “correct rejection.” If he released
the lever following offset of the noise-only stimulus, this was a “false
alarm.” We did not analyze those trials when a monkey released the
lever during presentation of the target-in-noise or noise-only stimuli
or when he did not release the lever following offset of the respond
stimulus.

Fig. 1. Recording location. An MRI coronal image of monkey S. The area
highlighted in red is the superior temporal gyrus. Using the Brainsight (Rogue
Technologies) software package, we targeted the middle and dorsal aspect of
this gyrus. D, dorsal; M, medial.
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Neural Recording Methodology

At the beginning of each experimental session, a tungsten electrode
(1 M� at 1 kHz; FHC) or a multicontact linear-array electrode
(U-Probe; Plexon; 16 electrode contacts) was lowered through a
recording chamber and into the brain using a skull-mounted micro-
drive (model MO-97; Narishige). OpenEx (TDT), LabView (National
Instruments), and MATLAB (The MathWorks) software synchro-
nized behavioral control with stimulus production and data collection.
Neural signals were sampled at 24 kHz, amplified (RA16PA and RZ2;
TDT), and stored for online and offline analyses. Online spike sorting
was conducted using OpenSorter (TDT).

Recording Strategy

Once a recording site was identified, we calculated the site’s best
frequency from the passive-listening paradigm. The frequency of the
target stimulus was then set to the best frequency of the recording site;
if we isolated multiple single neurons, we used the average best
frequency across all of these neurons. The monkeys participated in
randomly interleaved target-in-noise and noise-only trials. To accu-
rately assess the monkeys’ bias (response criterion), we presented
approximately the same number of target-in-noise trials and noise-
only trials. During target-in-noise trials, we randomly varied TNR on
a trial-by-trial basis.

Behavioral Analyses

A psychometric function quantified the monkey’s performance
during the target-in-noise task. The independent variable of this
function was TNR, and the dependent variable was the probability (P)
that the monkeys released the lever following offset of the target-in-
noise stimulus (i.e., hit rate). We fit the psychometric data to the
integral of the Weibull function (Quick 1974): P � � � (1 – � – �)·
{1 – exp[�(TNR/�)�]}. � (threshold, the TNR corresponding to P �
0.75 when � � 0.5 and � � 0), � (which governed the shape of the

function), � (the false alarm rate), and � (the lapse rate, which is the
fraction of misses for high-TNR stimuli and accounts for lapses of
attention and other nonperceptual errors) were free parameters that
were fit with a maximum-likelihood procedure.

Neural Analyses

We limited our neural analyses to the spiking activity elicited by
the target-in-noise and noise-only stimuli and did not analyze neural
responses that were elicited by the respond stimulus. Neural signals
were re-sorted offline into single units using Offline Sorter (Plexon).
Data are reported as firing rate (i.e., number of spikes per second) and
were aligned relative to the onset of the target-in-noise stimulus or the
noise-only stimulus. The “stimulus” period was the 750-ms period
that began with onset of either 1) the target-in-noise stimulus or 2) the
noise-only stimulus.

Definition of stimulus-responsive neurons. A neuron was consid-
ered “stimulus responsive” if its firing rate was modulated signifi-
cantly during the stimulus period (across all TNRs of target-in-noise
hit trials and noise-only correct-rejection trials), relative to a 750-ms
baseline period that preceded stimulus onset (Wilcoxon rank-sum test,
H0: no median difference in firing rate between the baseline and
stimulus periods, P � 0.05). We further subdivided this set of
stimulus-responsive neurons into those that were “excited” and those
that were “suppressed.” An excited A1 neuron had a higher firing rate
during the stimulus period, relative to the baseline period (1-tailed
Wilcoxon rank-sum test, H0: no difference in median firing rate, P �
0.025). A suppressed A1 neuron had a lower firing rate during the
stimulus period, relative to the baseline period (1-tailed Wilcoxon
rank-sum test, H0: no difference in median firing rate, P � 0.025).

Neurometric function to test for TNR sensitivity. A neurometric
analysis quantified the probability that an ideal observer could use
firing rate alone to correctly detect the target stimulus as a function of
TNR. The advantage of this analysis is that it allows for a direct
comparison between neural sensitivity and behavioral (psychometric)
sensitivity. The neurometric function relates the probability that an
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Fig. 2. Schematics of the target-in-noise task. During target-in-noise trials (A), a 750-ms auditory stimulus was presented; the “target-in-noise” stimulus was a
tone burst that was presented with comodulated noise (100% sinusoidal amplitude modulated noise). If a monkey released a touch-sensitive lever within 750 ms
of offset of this stimulus, we classified the trial as a “hit” and the monkey received a reward (water drop; top). If he did not release the lever or released it after
750 ms (as depicted), it was classified as a “miss” (bottom). During noise-only trials (B), a 750-ms comodulated noise burst was first presented. The monkeys
had to maintain their grip on the lever during presentation of the noise and for an additional 750 ms. Next, a “respond” stimulus (i.e., a tone burst) was presented.
If a monkey released the lever within 750 ms of offset of the respond stimulus, this was classified as a “correct rejection” and the monkey received a water reward
(top). If he did not release the lever or released it after 750 ms (as depicted), this was a “false alarm” (bottom). The schematics of the different stimuli are cartoons
and are not meant to represent the actual voltage-time waveforms of the tone-in-noise, noise-only, and respond stimuli.
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ideal observer could use only a neuron’s firing rate to correctly detect
the target stimulus as a function of TNR. We only used correct trials
(hits and correct rejections) to ensure that changes in neural activity
reflected changes in TNR and were not conflated with changes in
activity reflective of choice.

The neurometric curve is computed by first finding the firing rate
value (i.e., a decision boundary) that best classified firing rates from
target-in-noise trials (across all TNRs) into “signal” trials and firing
rates from noise-then-response trials into “noise” trials. This boundary
minimized the number of times that 1) a firing-rate value from a
noise-only trial could be misclassified as signal and 2) a firing-rate
value from a target-in-noise trial could be misclassified as noise. Next,
on a trial-by-trial basis and as a function of TNR, we used this
boundary to calculate the fraction of target-in-noise trials that were
classified correctly as signal. That is, a firing rate value from a
target-in-noise trial was classified as signal if it fell on the correct side
of the boundary. Typically, for excited neurons, this would mean that
its firing rate was greater than the boundary value. This boundary was
fixed and was not recalculated for different TNRs. Finally, this
function (i.e., the fraction of target-in-noise trials that were correctly
classified as signal as a function of TNR) was fit to a logistic equation
analogous to that described in Behavioral Analyses. We conducted
this curve fitting using a variety of different fitting rules and start-stop
criteria to test the degree to which different fits affected our findings.
We found that, on average, our curve fits were robust to differences in
the fitting quality in specific neurons.

Neurometric curves were calculated from time-binned spike rate
data (bin duration: 50 ms, advanced in 50-ms increments, relative to
onset of the target-in-noise stimulus). From the logistic fit, we calcu-
lated “neurometric sensitivity.” Neurometric sensitivity is a measure
of sensitivity to TNR, which depends on � (see logistic equation in
Behavioral Analyses) and governs the steepness of the neurometric
curve (steeper slopes reflected higher sensitivity). Neurometric sensi-
tivity was defined as the slope of the function determined from the
25% and 75% detection choice points (Klein 2001; Tsunada et al.
2016).

Neural sensitivity to signal and noise. We used a receiver operating
characteristic (ROC) analysis to calculate the degree to which an ideal
observer could differentiate between firing rates elicited on signal
trials from those on noise trials. The rationale for this analysis was that
it more closely approximated the monkeys’ task goals of distinguish-
ing between signal trials (i.e., target-in-noise trials, independent of
TNR) and noise trials (i.e., noise-only trials) and not detecting
differences in TNR level like was indexed by the aforementioned
neurometric analysis. The area under the ROC curve is the probability
that an ideal observer could discriminate between the distribution of
firing rates elicited on signal trials and those on noise trials.

In this analysis, firing rates were calculated, on a neuron-by-neuron
basis, across the entire 750-ms stimulus period, and we used only data
from correct trials (target-in-noise hit trials and noise-only correct-
rejection trials). A bootstrap randomization procedure, which shuffled
the relationship between firing rate and trial type (signal and noise)
tested whether each neuron’s ROC value was significantly different
from chance (2-tailed permutation test, H0: ROC value � 0.5, P �
0.05). We also tested whether the fraction of neurons with significant
ROC values was reliable (binomial test, H0: fraction of significant
neurons equal to that expected by chance, P � 0.05).

Neural sensitivity to behavioral choice (choice probability). Choice
probability quantifies the ability of an ROC-based ideal observer to
determine a listener’s choice based only on the firing rate of a single
neuron, given responses separated by choice for nominally identical
stimulus conditions (Britten et al. 1996; Gu et al. 2007; Purushotha-
man and Bradley 2005; Russ et al. 2008b; Tsunada et al. 2011, 2016).
We computed choice probability from data generated in response to
noise-only trials. Specifically, we tested the difference between the
firing rate distributions generated on correct-rejection trials (i.e., the
monkey did not report the presence of a target) and on false-alarm

trials (i.e., the monkey reported the presence of a target). On a
neuron-by-neuron basis, we analyzed choice probability in two dif-
ferent ways: 1) as a function of time, using time-binned (bin duration:
100 ms, advanced in 50-ms increments) firing rate data, and 2) across
the entire 750-ms stimulus period. For this latter analysis, a bootstrap
randomization procedure, which shuffled the relationship between
firing rate and trial outcome (correct rejections and false alarms),
tested whether each neuron’s choice-probability value was signifi-
cantly different from chance (2-tailed permutation test, H0: choice
probability � 0.5, P � 0.05). We also tested whether the fraction of
neurons with significant choice-probability values was reliable (bino-
mial test, H0: fraction of significant neurons equal to that expected by
chance, P � 0.05).

Population analyses: linear classifiers. Next, in two different
analyses, we used a linear classifier to test whether the spiking activity
of populations of A1 neurons contained more robust representations
of the task parameters than the average (median) spiking activity of
single A1 neurons. 1) In the first analysis, we developed a linear
classifier that quantified the degree to which the firing rates of A1
neural populations discriminated between signal (i.e., the firing rates
on target-in-noise hit trials, independent of TNR) and noise (i.e., the
firing rates on noise-only correct-rejection trials). We conducted this
analysis because the monkeys’ task goal was to report the presence of
the signal and ignore noise but not to discriminate between different
TNRs. In this analysis, we only used hit and correct-rejection trials to
ensure that the results of the classifier were not conflated with choice
effects. 2) In the second linear classifier, we quantified how well the
firing rates of populations of A1 neurons differentiated between the
firing rates elicited on trials in which the monkeys made different
behavioral choices, for the same nominal stimulus. Specifically, we
compared population-level firing rate activity generated on correct-
rejection trials with those from false-alarm trials.

Several methodological issues are worth noting. First, because
different numbers of trials might have occurred for different trial or
stimulus conditions, we subsampled our data to ensure that that we
had the same number of trials for each condition (Blagus and Lusa
2010). Second, to control for potential bias due to neuron-by-neuron
differences in firing rate, we z-scored each neuron’s firing rate, which
was calculated from the entire 750-ms stimulus period. Third, neuro-
nal data were analyzed independent of recording session and monkey.
As a consequence of this random selection, we minimized the con-
tribution of correlation structure on the population read out, a practice
consistent with several previous studies (Pagan et al. 2013; Rust and
DiCarlo 2010, 2012). Finally, similarly to previous studies (Downer et
al. 2017; Jazayeri and Movshon 2006; Miller and Recanzone 2009;
Yang and Lisberger 2009), we set the frequency of the target stimulus
at each neuron’s best frequency. As a consequence, our population of
A1 neurons was recorded using different stimuli. In other words, our
analysis focused on population-level contributions of neurons that
were tuned for the frequency of the target stimulus and minimized
contributions of neurons with tuning curves that “flank” that fre-
quency of the target stimulus. These latter two points are discussed
further in DISCUSSION.

For each classification analysis (Carruthers et al. 2015; Pagan et al.
2013; Rust and DiCarlo 2010, 2012), we constructed an N-dimen-
sional population response vector that constituted the firing rates of a
population of N neurons to R repetitions of S stimulus conditions (e.g.,
signal and noise). Each classification analysis underwent a 10-fold
cross-validation procedure to avoid overfitting. This procedure di-
vided the neural data into 10 groups: in an iterative fashion, 1 group
was a test set, and the remaining 9 formed a training set. To test how
well each neural population could discriminate between the different
trial or stimulus conditions, we implemented a linear read-out proce-
dure in which we fit the training set to a linear hyperplane that
separated the population response vectors corresponding to two dif-
ferent conditions (i.e., signal and noise or correct rejection and false
alarms). Using this hyperplane, we calculated the fraction of times
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that the test data was classified correctly and report average perfor-
mance over 500 different instantiations of a classifier, which was
constructed from N randomly selected neurons.

All classifiers were constructed using a support vector machine
procedure that was implemented in the MATLAB programming
environment using the LIBSVM library (Chang and Lin 2011) with a
linear kernel, the C-SVC algorithm, and cost set to 1, which is the
algorithm’s default value.

RESULTS

Behavioral Performance

Monkeys S (n � 48 sessions) and A (n � 11 sessions)
reliably reported the presence of a target stimulus (i.e., a tone
burst) that was presented simultaneously in a noisy background
of comodulated broadband noise (Fig. 2), with performance
that depended systematically on TNR (Fig. 3). When the target
stimulus was less than the sound level of the noise (i.e., TNR
�5 dB, Fig. 3A), the monkey rarely reported the target.
However, as the TNR increased, the fraction of times that the
monkeys correctly reported the presence of the target increased
(Fig. 3A). The monkey’s false alarm rate was 8%.

Figure 3B replots the monkeys’ performance as a function of
d=. d= is a nonparametric measure of the monkeys’ sensitivity
in detecting the target stimulus (Green and Swets 1966). At the
lowest TNR, the monkeys’ average d= value was essentially

zero, meaning that they could not discriminate between the
target-in-noise stimulus and the noise stimulus. As TNR in-
creased, their d= value increased, indicating their increased
sensitivity to TNR.

Recording Site Localization

During these behavioral sessions, we isolated 116 single
units from A1 in monkey S and 90 single units from A1 in
monkey A. Because the data from monkey A were collected
mostly with a multicontact electrode array, we could record
from a comparable number of neurons with fewer recording
sessions than in monkey S. The subsequent neurophysiological
analyses were conducted only on stimulus-responsive neurons.
Of the 206 single units, we classified 146 as stimulus respon-
sive. We further subdivided these stimulus-responsive neurons
into 120 excited neurons; an excited neuron had a higher firing
rate during the stimulus period than during the baseline period
(1-tailed Wilcoxon rank-sum test, H0: no median difference in
firing rate, P � 0.025). We also identified 26 suppressed
neurons, which had higher firing rates during the baseline
period than during the stimulus period (1-tailed Wilcoxon
rank-sum test, H0: no median difference in firing rate, P �
0.025).

We found that the frequency tuning of our population of A1
neurons ranged between 0.535 and 8.0 kHz (median: 1.32 kHz,
interquartile range: 1.1–2.3 kHz). The median Q value (an
index of tuning sharpness; best frequency divided by band-
width, 10 dB above the lowest sound level that elicited a
reliable response) was 3.5 (interquartile range: 2.3–4.6). Using
spiking data across all TNRs and from all target-in-noise hit
trials, we found that the median latency (i.e., the first of 2 or
more consecutive time bins that were �2 SD above a 750-ms
baseline period) was 29 ms. Median latency decreased to 20 ms
when it was calculated only from the TNR value that elicited
the maximum firing rate. This collection of neurophysiological
response properties and our MRI-guided identification of A1’s
stereotactic location are consistent with those seen in earlier
studies of A1 (Camalier et al. 2012; Fu et al. 2004; Kajikawa
et al. 2005; Kikuchi et al. 2010; Massoudi et al. 2015;
O’Connell et al. 2014; Recanzone et al. 1993, 1999, 2000;
Werner-Reiss and Groh 2008) and verified our targeted record-
ing site.

A1 Activity During the Target-in-Noise Task

The firing rates of A1 neurons were modulated by the stimuli
of the target-in-noise task. For example, the spiking activity of
the example A1 neurons in Fig. 4, A and C, had close to
monotonic relationships between firing rate and TNR. For
these neurons, the firing rate was lowest during presentation of
the noise-only stimulus (gray curve; correct-rejection trials
only) and then increased smoothly as we increased the TNR of
the target-in-noise stimulus (colored curves; hit trials only). On
the other hand, some neurons only seemed to code the presence
of an auditory stimulus in the environment. For these neurons,
all of the target-in-noise stimuli as well as the noise-only
stimulus elicited nominally the same firing rate. One neuron
with this response profile is shown in Fig. 5A. This neuron
responded robustly and equally well to both the noise-only
stimulus (gray data; correct rejections) and the target-in-noise
stimuli (colored data; hits only). Other A1 neurons had firing
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Fig. 3. Psychophysical performance. Behavioral data are plotted as the fraction
of trials in which the monkey released the lever as a function of TNR during
target-in-noise trials (i.e., hit rate; A) and as a function of d= (B). d= was
calculated from the hit rate and from the proportion of false-alarm trials during
the noise-only trials. Error bars are SD calculated using behavioral data from
all of the recording sessions reported in this study.
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rates that were suppressed by onset of the auditory stimuli. One
example neuron is shown in Fig. 5C.

Population peristimulus time histograms showed qualita-
tively similar trends as these example units. For excited neu-
rons (Fig. 6A), on average, the noise-only stimulus elicited the
smallest response. The average A1 firing rate was higher in
response to the target-in-noise stimuli than to the noise-only
stimulus and increased as the TNR of the target-in-noise
stimulus increased. Furthermore, and consistent with the ex-
ample suppressed neuron (see Fig. 5C), average A1 activity for

suppressed neurons was not systematically modulated by the
noise-only and the target-in-noise stimuli (Fig. 6B).

Neurometric Function to Test for TNR Sensitivity

In our first analysis, we calculated each neuron’s neuromet-
ric function, which describes the probability that an ideal
observer could use a neuron’s spiking activity to detect the
target stimulus. More specifically, this analysis quantified how
well this ideal observer could use firing rate to differentiate

Fig. 4. Example A1 neurons whose firing rate was
increased with TNR. Shown are data for 2 different
A1 neurons whose firing rate was modulated rela-
tively smoothly by TNR. A and C: raster plot and
peristimulus time histogram for each neuron. Dots
indicate the time of occurrence of action potentials
relative to stimulus onset (time 0). Solid thick lines
indicate the mean instantaneous firing rate (shading
indicates �SE) in 100-ms bins that advance by 50
ms. Colors correspond to different values of TNR
from target-in-noise hit trials; gray indicates noise-
only (NO) correct-rejection trials. Vertical dashed
lines indicate stimulus onset and offset, respec-
tively. B and D: neurometric curve for each corre-
sponding neuron. Each curve plots the fraction of
trials in which an ideal observer could use the
neuron’s firing rate to correctly detect the target stim-
ulus as a function of TNR. The curves were obtained
from firing rate data averaged over the 750-ms stimu-
lus period. Error bars indicate SD. The solid black line
is the maximum-likelihood fit of the neurometric data
to the integral of the Weibull function (Quick 1974).

Fig. 5. Examples of an A1 neuron whose firing rate was
not modulated by TNR and one whose firing rate was
suppressed by TNR. Raster plots and peristimulus time
histograms represent an A1 neuron whose firing rate was
not differentially modulated by the different values of
TNR of the target-in-noise stimulus and by the noise-only
stimulus (A) and one whose firing rate was suppressed by
TNR (C). Data in B and D show each neuron’s corre-
sponding neurometric function. The data are formatted in
the same manner as Fig. 4.
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between target-in-noise trials and noise-only trials as a function
of TNR; see MATERIALS AND METHODS for more details.

To put this neurometric analysis into context, consider our
example neurons in Figs. 4 and 5. In Fig. 4, A and C, both
neurons responded relatively weakly to the noise-only stimulus
but responded with higher firing rates as we increased the TNR
in the target-in-noise stimulus. Consequently, for their respec-
tive neurometric functions, we found that the fraction of times
that an ideal observer could correctly detect the target stimulus
increased with TNR and reached near perfect detectability at
the highest TNR (�20 dB; Fig. 4, B and D).

In contrast, the response profile of the neuron in Fig. 5A is
quite different. This neuron’s firing rate was modulated
strongly by the auditory stimuli but had nominally the same
firing rate for all of the target-in-noise stimuli as well as for the
noise-only stimulus. Because the neuron’s firing was invariant
to the different stimulus conditions, its neurometric curve (Fig.
5B) was essentially a flat line at ~0.5. In other words, the
fraction of times that an ideal observer could use this neuron’s
spiking activity to detect the target stimulus was at chance
level. Similarly, our example suppressed neuron (Fig. 5C) had
a flat neurometric function (Fig. 5D), indicating, once again,
that an ideal observer could not reliably use this neuron’s firing
rate to detect the target stimulus.

To quantify each neuron’s sensitivity to TNR, we calculated
the slope of each neuron’s neurometric function: steeper slopes
indicate more sensitivity to TNR than do shallower slopes. The
slope of the function was determined from the 25% and 75%
detection choice points (	fraction correct/	TNR). Neuromet-
ric sensitivity was calculated as a function of time by using
50-ms bins of spiking data that advanced in 50-ms increments.
We also examined neurometric sensitivity over the entire
750-ms stimulus period.

Scatter plots showing distributions of slope values as a
function of time (relative to stimulus onset) are shown in Fig.

7A. Consistent with our observation that many A1 neurons
were not substantially modulated by TNR (Fig. 6), many of
these slopes were close to zero. However, we found that the
median of each of these distributions was significantly greater
than zero (Wilcoxon rank-sum test, H0: median slope
value � 0, P � 0.05). Although some of the individual distri-
butions differed from one another (Kruskal-Wallis test, H0:
median slope difference equals � 0, P � 0.05), we could not
identify a consistent pattern.

An important benefit of calculating the neurometric slope is
that we can compare this value with an analogous value
derived from the psychometric function. This comparison pro-
vides insight into the degree to which A1 activity correlates
with the monkeys’ behavior. Neurometric slopes [median for
the entire stimulus period: 0.036 (	fraction correct/	TNR); inter-
quartile range: 0.02–0.05] were shallower (Wilcoxon signed-rank
test, H0: median slope value � 0, P � 0.05) than the correspond-
ing psychometric slopes [median: 0.067 (	fraction correct/
	TNR); interquartile range: 0.05–0.07].

ROC Analysis to Test for Sensitivity to Signal and Noise

All of the above-described analyses quantified the degree to
which neural activity encoded the different values of TNR.
However, the monkeys’ task was not to explicitly report these
values or to discriminate between different TNR values. Thus,
although it is informative to look at TNR sensitivity, a better
measure may be to quantify the sensitivity of A1 activity to the
monkeys’ actual task goal: that is, detect signal (i.e., all
target-in-noise trials), independent of TNR value, and ignore
noise (i.e., noise-only trials). To test neural sensitivity to this
signal vs. noise discrimination, we conducted an ROC analysis,
which quantified how well an ideal observer could discriminate
between A1 spiking activity elicited on signal and noise trials.

The result of this ROC analysis is shown in Fig. 7B. The
median value of this distribution was 0.51 (range: 0.23–1,
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Fig. 6. Population activity. A and B: population
peristimulus time histograms relative to stimu-
lus onset. Solid lines indicate mean firing rate.
Colors correspond to different values of TNR
from target-in-noise hit trials; gray indicates
noise-only (NO) correct-rejection trials. Verti-
cal dashed lines indicate stimulus onset and
offset, respectively. Data in A are from “ex-
cited” A1 stimulus-responsive neurons (i.e.,
those whose firing rate increased with stimulus
onset). Data in B are from “suppressed” A1
stimulus-responsive neurons (i.e., those whose
firing rate decreased with stimulus onset).
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interquartile range: 0.45–0.57), a value that was not different
from chance (Wilcoxon rank-sum test, H0: median ROC
value � 0.5, P � 0.05). That is, an ideal observer, in general,
could not use the firing rate of A1 neurons to discriminate
between the firing rates elicited on signal and noise trials. Yet,
we found that certain A1 neurons (44/146; 30%) had ROC
values that differed from chance (2-tailed permutation test, H0:
ROC value � 0.5, P � 0.05), a percentage that was higher than
expected by chance (binomial test, H0: fraction of significant
neurons equal to that expected by chance: 7.3%, P � 0.05).

Choice Probability

To test the relationship between A1 activity and the mon-
keys’ decisions, we computed the choice probability of indi-
vidual neurons (Fig. 8). Choice probability quantifies the abil-
ity of an ROC-based ideal observer to use the spiking activity
of A1 neurons to discriminate between the monkeys’ choices
for the same nominal stimulus. On a neuron-by-neuron basis
and as a function of time (100-ms bins that advanced over time
in 50-ms increments), we found that the median choice-prob-
ability value did not differ from chance (Wilcoxon rank-sum,
H0: median choice-probability value � 0.5, P � 0.05; Fig. 8A).

We also tested, on a neuron-by-neuron basis, choice probabil-
ity using the entire 750-ms stimulus period (Fig. 8B). Because
the median value of this choice-probability distribution (0.51;
interquartile range: 0.47–0.54) did not differ from chance
(Wilcoxon rank-sum test, H0: median choice-probability
value � 0.5, P � 0.05), it indicates that we could not identify
any systematic effect of choice on the spiking activity of
individual A1 neurons. However, a population of A1 neurons
(14/146; 9.5%) had choice-probability values that differed
from chance (2-tailed permutation test, H0: choice-probability
value � 0.5, P � 0.05), a fraction that was higher than ex-
pected by chance (binomial test, H0: percentage of significant
neurons equal to that expected by chance: 7.3%, P � 0.05).

In an additional analysis, we correlated, on a neuron-by-
neuron basis, choice probability and neurometric sensitivity
(i.e., neurometric slope, calculated over the entire 750-ms
stimulus period). We could not identify a relationship between
these two values (Fig. 8C; Spearman correlation coeffi-
cient � �0.042, P � 0.05). Similarly, an analysis between the

Fig. 8. Distribution of choice probability. Distribution of choice probabilities
was calculated as a function of time (A) and over the entire 750-ms stimulus
period (B). A: data were calculated using firing rates that were binned into
100-ms bins that advance in 50-ms increments. Each data point is the mean
choice-probability value, and error bars indicate SD. Choice probability was
calculated independently using the entire set of A1 stimulus-responsive neu-
rons (red), the subpopulation of excited stimulus-responsive neurons (green),
and the subpopulation of suppressed stimulus-responsive neurons (blue). B:
black bars indicate the fraction with significant (Sig) choice-probability values
(2-tailed permutation test, H0: choice probability � 0.5, P � 0.05). Gray bars
indicate the fraction that did not have significant (Not Sig) choice-probability
values (2-tailed permutation test, H0: choice probability � 0.5, P � 0.05). C:
neurometric slope (	fraction correct/	TNR) is correlated with choice-proba-
bility value on a neuron-by-neuron basis. Dashed line shows the correlation
line between these two values; this correlation was not significant (Spearman
r � �0.042; P � 0.05). The slope values were generated from data collected
over the entire 750-ms stimulus period; see Fig. 7.
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Fig. 7. Selectivity of A1 responses. A: neurometric sensitivity to TNR. Sensi-
tivity was defined as the slope (	fraction correct/	TNR) of each neuron’s
neurometric function from the 25% and 75% detection choice points. Neuro-
metric sensitivity is shown as a scatter plot as a function of time (relative to
stimulus onset) using 50-ms bins of data that advanced in 50-ms increments,
as well as the entire 750-ms stimulus period (far right). B: discriminability
between “signal” and “noise”. The discriminability between the firing rates
elicited on signal and noise trials was calculated with an ROC ideal-observer
analysis on a neuron-by-neuron basis. Bar graph shows the distribution of ROC
values. Black bars indicate those neurons with significant (Sig) ROC values
(2-tailed permutation test, H0: ROC value � 0.5, P � 0.05). Gray bars indicate
those that did not have significant (Not Sig) ROC values (2-tailed permutation
test, H0: ROC value � 0.5, P � 0.05).
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ROC values (Fig. 7B) and behavioral d= (Fig. 3B) failed to
identify a relationship. These findings suggest that, in general,
even the most sensitive A1 neurons did not have task-driven
activity that was related to the monkeys’ choices (Britten et al.
1996; Celebrini and Newsome 1994; Gu et al. 2007; Law and
Gold 2008; Tsunada et al. 2016).

Population Decoding of A1 Activity

Single-neuron analyses can provide important insights but
may not necessarily predict the contribution of an A1 neural
population, as a whole, to auditory behavior (Ince et al. 2013;
Mesgarani et al. 2008; Miller and Recanzone 2009). To test
how population-level A1 spiking activity encoded variables
related to our target-in-noise task, we constructed cross-vali-
dated linear classifiers (support vector machines) (Pagan et al.
2013; Rust and DiCarlo 2010, 2012) and tested whether we
could use a linear-decision boundary to separate A1 population
activity elicited by 1) signal and noise or 2) different behav-
ioral reports. The results of these classifier analyses are shown
in Fig. 9.

In our first analysis, we constructed a linear classifier and
tested how well A1 population activity differentially encoded
signal (i.e., target-in-noise trials, across all TNRs) and noise
(noise-only trials). We chose to do this analysis because the
monkeys’ task goal was to report the presence of the signal and
ignore noise but not to discriminate between different TNRs.
The results of this classifier are shown in Fig. 9A. The firing
rates of individual A1 neurons discriminated between signal
and noise trials with an accuracy of ~0.6; this value is some-
what comparable to the 0.51 median value that we found in our
single-neuron ROC analysis; see Fig. 7B). However, as the size
of the A1 population increased, the performance of the classi-
fier improved and approached near-perfect classification with
100 neurons. The subpopulation of excited A1 neurons tracked
with the entire A1 population. However, the subpopulation of
suppressed A1 neurons did not vary much from chance per-
formance.

Next, we constructed a second classifier and tested whether
this classifier could discriminate between A1 population spik-
ing activity elicited by different behavioral reports for nomi-
nally identical stimuli. We used neural activity elicited by the
noise-only stimulus of the noise-only task and tested whether a
classifier could discriminate between correct-rejection and
false-alarm trials. The results of this classifier are shown in Fig.
9B. Comparable to our single-neuron choice-probability find-
ings (Fig. 8), the average decoding capacity of the classifier for
single neurons was at chance level (i.e., 0.5). As the size of the
A1 neural population increased, the decoding capacity in-
creased and was able to discriminate between correct rejections
and false alarms with a maximum accuracy of ~0.75. This
decoding capacity was mainly attributable to the excited sub-
population of A1 neurons; the decoding capacity of the sup-
pressed A1 neurons hovered at ~0.5.

DISCUSSION

We combined, for the first time in a nonhuman-primate
model, behavior and neural recordings to identify a potential
contribution of A1 spiking activity to a listener’s ability to
detect a target sound from a noisy background. This study
tested the contribution of A1 to a listener’s detection of a target

stimulus whose onset and offset co-occur with a noisy back-
ground (see Fig. 2). An open empirical question is the degree
to which the current findings are limited to this type of task or
whether they generalize to other types of tasks, such as the
detection of a target from an ongoing noisy background.

We found that as TNR increased, the probability that the
monkeys reported the target increased (Fig. 3). Our monkeys’
performance was comparable to that reported in similar non-
human primate studies (Bohlen et al. 2014; Dylla et al. 2013).
Any behavioral differences between the current and the previ-
ous monkey studies most likely relate to differences in how the
monkeys were trained and differences in task design (e.g.,
reward structure, proportion of noise trials, etc.). For example,
one potentially important difference between the current and
previous studies is that we kept the TNR values constant and
did not vary these values based on changes in the monkeys’
psychometric threshold. Furthermore, because we did not sys-
tematically vary the properties of the noise-only stimulus (e.g.,
the phase onset of the amplitude modulation), we could not
deduce the strategy that the monkeys used to solve our task.

Fig. 9. Population analysis of A1. A decoding analysis (linear classifier)
quantified how well increasingly larger populations of A1 neurons encoded
“signal” (i.e., the distribution of firing rates generated during target-in-noise hit
trials across all TNRs) vs. “noise” (i.e., the distribution of firing rates generated
during noise-only correct-rejection trials) (A) and choice [correct rejections
(CR) vs. false alarms (FA); B]. Independent decoding analyses were conducted
using the entire set of A1 stimulus-responsive neurons (red), the subpopulation
of excited neurons (green), and the subpopulation of suppressed neurons
(blue). Circles indicate the mean performance of each classifier (i.e., the
fraction of times that the classifier correctly classified the test data); error bars
indicate SD. Shaded regions indicate the mean (�95% confidence interval)
classifier performance expected by chance (bootstrap randomization proce-
dure). Dashed lines in A and B indicate chance performance.
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However, a recent study indicated that monkeys detect a target
in a noisy background by listening in the “dips” of the co-
modulated noise (i.e., the time points when the amplitude of
the noise was minimized) (Bohlen et al. 2014).

Three points are worth discussing with respect to our pat-
terns of spiking activity. First, one interesting phenomenon,
which was apparent in individual single neurons (e.g., Fig. 4C)
and in population spiking activity of the excited neurons (Fig.
6), was that spiking activity appeared to ramp up during the
baseline period (i.e., the time before stimulus onset). We
eliminated several trivial explanations for this ramping. For
example, this activity was not due to acausal filtering. That is,
it was not due to a large smoothing kernel that averaged pre-
and peristimulus responses together. Similarly, it is not due to
poor spike sorting: after an independent resorting of the spiking
data, we still found this ramping. It may very well be that
because our prestimulus period had a fixed duration, the
monkeys might have been able to “time” the onset of the
stimulus. We speculate that this increase in prestimulus activity
reflects the monkeys’ anticipation of stimulus onset, a possi-
bility that is consistent with increasing evidence that A1
activity can correlate with behavioral and task demands (Bizley
et al. 2013; Brosch et al. 2005; 2011; Fritz et al. 2003;
Jaramillo and Zador 2011; Johnson et al. 2012; King and
Nelken 2009; Lakatos et al. 2013, 2016; Lee and Middlebrooks
2011; Niwa et al. 2012a, 2012b; Otazu et al. 2009; Recanzone
and Sutter 2008; Selezneva et al. 2006; Vaadia et al. 1982;
Werner-Reiss et al. 2003). Second, like previous studies that
identified beautifully synchronized (time-locked) responses to
amplitude-modulated noise (Lu et al. 2001; Lu and Wang
2000; Niwa et al. 2012a, 2012b, 2013), we also found syn-
chronized activity (median vector strength � 0.16; interquar-
tile range: 0.09–0.23; TNR � 20 dB; (Goldberg and Brown
1969). This degree of synchronization appears somewhat less
than that seen in these previous studies. One possible expla-
nation for this discrepancy is that because our monkeys were
trained on only one amplitude-modulation depth (100% sinu-
soidally amplitude modulated noise), there might have been
stimulus-responsive plasticity that minimized the occurrence of
this synchronization. Third, like several other central auditory
system studies (Bar-Yosef and Nelken 2007; Delgutte and
Kiang 1984; Giraud et al. 1997; May et al. 1998; Mesgarani et
al. 2014; Narayan et al. 2007; Schneider and Woolley 2013;
Scott and McGettigan 2013; Shetake et al. 2011; Wong et al.
2008), the spiking activity of A1 neurons was modulated
modestly and to differing degrees by TNR (Figs. 4, 5, and 7A),
suggestive of non-monotonic sound-level tuning (Sadagopan
and Wang 2008). However, it is inconsistent with that seen
from anesthetized subjects in which most neurons had mono-
tonic sound-level tuning (Phillips and Hall 1986).

How did A1 activity relate to behavior? The slopes of our
neurometric curves were, on average, relatively shallow. More-
over, they were shallower than the corresponding psychophys-
ical sensitivity. This difference in slope indicates that single A1
neurons could not, on average, account for the monkeys’
behavior. This finding is consistent with our ROC analysis
(Fig. 7B) in which we found that the firing rate of the median
A1 neuron did not differentiate between signal and noise trials.
Similarly, the monkeys’ choices did not modulate the firing
rate of the median A1 neuron (Fig. 8). Together, these three
analyses suggest that the average (median) spiking activity of

single neurons in A1 may not be sufficient to explain the
monkeys’ behavior in our target-in-noise task.

However, population-level analyses revealed that rela-
tively small groups of neurons more closely matched the
monkeys’ performance (Fig. 9). For example, with popula-
tions of ~20 neurons, the fraction of signal and noise trials
that were decoded correctly was ~0.75 (Fig. 9A). This value
closely mirrored the monkeys’ overall performance: on aver-
age, the monkeys were able to successfully report the target
(signal) on ~0.68 of trials (across all TNRs; Fig. 3). With larger
neuronal populations, classifier performance continued to im-
prove and actually exceeded the monkeys’ performance. Pop-
ulations of ~100 A1 neurons also reflected the monkeys’
choices (Fig. 9B).

One potential interpretation of this finding is that individual
A1 neurons were weakly sensitive to different task-related
parameters, but as a population, A1 neurons robustly repre-
sented the parameter space of our target-in-noise task appro-
priately. In other words, if spiking activity in all A1 neurons
identically represented the parameters of our target-in-noise
task, then the population-level analyses would be identical to
the single-neuron analyses. However, because population-level
activity more closely mirrors behavioral activity, it suggests
that the spiking activity of different A1 neurons represents the
appropriate parameter space sufficiently enough to explain the
monkeys’ behavior during our task.

This notion that populations of neurons have a more robust
representation of task-related information than single neurons
is consistent with several previous studies (Averbeck et al.
2006; DiCarlo et al. 2012; Downer et al. 2015; Engineer et al.
2008; Graf et al. 2011; Ince et al. 2013; Kohn et al. 2016;
Pachitariu et al. 2015; Pouget et al. 2000; Safaai et al. 2013).
For example, seminal studies by Middlebrooks and colleagues
(Middlebrooks et al. 1994, 1998; Stecker and Middlebrooks
2003; Xu et al. 1998) and more recent work by Miller and
Recanzone (2009) have identified population codes in the
auditory cortex that can subserve sound-localization behavior.
In those studies, average single-unit activity from auditory
cortex neurons was relatively broadly tuned for the location of
a sound source. Because the spatial sensitivity of these indi-
vidual neurons was much broader than a listener’s behavioral
sensitivity, it was unclear how individual neurons could serve
as a basis for spatial perception. However, the sensitivity of
this population-level activity was comparable to the listener’s
behavioral sensitivity and could potentially subserve behavior.
Similarly, population codes have been shown to be important
in the encoding of vocalizations and speech sounds (Chang et
al. 2010; Engineer et al. 2008; Fishman et al. 2016; Ince et al.
2013; Mizrahi et al. 2014; Pasley et al. 2012; Russ et al. 2008a;
Schneider and Woolley 2013). We add to this literature by
identifying a population-level contribution of primate A1 spik-
ing activity to a nonspatial perceptual decision.

Nonetheless, any interpretation of our population analysis
needs to be couched by several important caveats. First, in the
construction of our classifiers, we included all of our neurons
and treated them equivalently. It is not clear, though, whether
the brain reads out all neurons equivalently. Indeed, it may
very well be that downstream neurons only read out the most
informative neurons (Ince et al. 2013; Law and Gold 2008), for
example, those neurons whose firing rate was modulated to the
greatest extent (and/or most reliably) by different values of
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TNR or only those neurons whose tuning properties matched
the frequency of the target stimulus (Downer et al. 2017;
Jazayeri and Movshon 2006; Miller and Recanzone 2009;
Yang and Lisberger 2009). Second, the degree to which access
to larger populations of A1 neurons affects decoding cannot be
readily determined without knowing the exact process by
which A1 activity is read out. Third, whereas our decoder used
a linear algorithm (DiCarlo et al. 2012), it may very well be
that actual neurons use nonlinear decoding. Fourth, we did not
include timing information in our classifier and focused on
firing rates only. Incorporating this spike-timing information
might have increased the accuracy of their performance
(Middlebrooks et al. 1994, 1998; Stecker and Middlebrooks
2003; Xu et al. 1998). Finally, as is common in nonhuman-
primate auditory studies (but see Atencio and Schreiner 2008,
2010; Fishman and Steinschneider 2012; Lakatos et al. 2008,
2013; Schroeder and Lakatos 2009; Schroeder et al. 2010;
Tsunada et al. 2012), we do not know whether we recorded
from the same cortical layer or from different cortical layers,
and we cannot conclusively determine whether we recorded
from different neuronal classes. It is possible that if we had
been able to identify the layer and/or neuronal class, a subset of
our recordings (e.g., those in a certain layer) might have had
response properties that more directly related to the detection
process required in our task.

In addition to the caveats noted above, is not clear why
classifier performance with larger neuronal populations was
better than the monkeys’ behavioral performance. However,
one likely possibility is the effect of interneuronal correlations
on population activity. Correlated activity can substantially
affect neural sensitivity and the read out of population activity
(Cohen and Kohn 2011; Cohen and Newsome 2009; Downer et
al. 2015; Graf et al. 2011; Gu et al. 2011; Kohn et al. 2016; Liu
et al. 2013; Zohary et al. 1994). Because we ignored the
correlation structure (see MATERIALS AND METHODS), like other
prominent studies (DiCarlo and Cox 2007; DiCarlo et al. 2012;
Miller and Recanzone 2009; Pagan et al. 2013; Rust and
DiCarlo 2012), we may have inflated the read-out capacity of
our neural population. Nonetheless, because we simultaneously
measured auditory behavior and neural activity, unlike previ-
ous studies that did not simultaneously collect these measures
(Ince et al. 2013; Mizrahi et al. 2014; Narayan et al. 2007; Russ
et al. 2008a; Schneider and Woolley 2013; Shetake et al.
2011), we were able to describe, for the first time, the degree
to which population-level A1 activity might support auditory
perception.

Finally, our population analyses only indicate that informa-
tion is available in A1 population activity. It is a substantially
different question to ask whether downstream neurons can read
out this information and create representations at the level of
the single neuron that can match behavior or whether this
information remains encoded at the population level. To ad-
dress this question, we need more studies that systematically
investigate how populations of neurons in different cortical
regions of the ventral auditory pathway encode and represent
perceptually relevant features of our auditory world (DiCarlo
and Cox 2007; DiCarlo et al. 2012; Miller and Recanzone
2009; Rust and DiCarlo 2012).

How do our single-neuron and population-level findings fit
into the broader A1 literature? Even though A1 is classically
considered to be a general processor of auditory information,

there is increasingly more evidence suggesting that perceptual
and task-related information is found in the spiking activity of
A1 neurons (Bizley et al. 2013; Brosch et al. 2005; 2011; Fritz
et al. 2003; Jaramillo and Zador 2011; Johnson et al. 2012;
King and Nelken 2009; Lakatos et al. 2013, 2016; Lee and
Middlebrooks 2011; Niwa et al. 2012a, 2012b; Otazu et al.
2009; Recanzone and Sutter 2008; Selezneva et al. 2006;
Vaadia et al. 1982; Werner-Reiss et al. 2003). In contrast, the
current findings and previous work from our group and others
suggest that the monkeys’ auditory decisions (choices) do not
reliably modulate neural activity in the auditory cortex (Binder
et al. 2004; Chang et al. 2010; Gutschalk et al. 2008; Lemus et
al. 2009; Tsunada et al. 2011, 2016). However, it is conceiv-
able that in those studies, as we showed in the current study
(Fig. 9), choice-related signals may have been present in
population-level activity.

Nonetheless, at present, we cannot fully reconcile these
different sets of findings. However, one possibility may relate
to the specific nature of the auditory decision. For those studies
that demonstrated significant choice-related spiking activity in
A1 (Bizley et al. 2011; Niwa et al. 2012b; 2013), it may be that
A1 contributes directly to the decision process because the
relevant stimulus attributes were represented robustly in the
firing rates of individual A1 neurons or in earlier levels of
auditory processing (Pressnitzer et al. 2008; Yao et al. 2015).
In contrast, in the current study and in other studies that did not
identify choice-related spiking activity in the auditory cortex
(Lemus et al. 2009; Tsunada et al. 2011, 2016), later regions of
the ventral auditory pathway encode choice because single A1
neurons do not robustly represent the relevant stimulus fea-
tures. Indeed, single-neuron and functional imaging studies
have demonstrated that areas beyond auditory cortex can be
modulated by choice during certain tasks, including those that
require listening in noisy backgrounds (Binder et al. 2004;
Russ et al. 2008b; Salvi et al. 2002). Thus the functional
contribution of each brain region of the ventral pathway to
auditory perception may be modulated by the specific nature
and demands of the decision (Bizley and Cohen 2013; Bizley
et al. 2011; Niwa et al. 2013).

An important caveat to this discussion is that the presence of
A1 choice-related spiking activity in our studies or in previous
(monkey and ferret) studies (Bizley et al. 2011; Niwa et al.
2012a, 2012b, 2013) does not necessarily imply that it arises in
A1, nor is it part of a feedforward process in which this
choice-related activity contributes causally to the eventual
auditory decision (Nienborg and Cumming 2009; Niwa et al.
2013; Tsunada et al. 2016). Similar neural signatures might
also arise from regions of the ventral auditory pathway that
represent the auditory decision but provide feedback connec-
tions back to A1 (Nienborg and Cumming 2009). Future work
should focus on using auditory response-time tasks (Stüttgen et
al. 2011; Tsunada et al. 2016) to identify the temporal window
of an auditory decision to differentiate between these feedfor-
ward vs. feedback alternatives (Cohen and Newsome 2009;
Nienborg and Cumming 2009).
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