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The intrinsic uncertainty of sensory information (i.e., evidence) does not necessarily deter an observer from making a reliable
decision. Indeed, uncertainty can be reduced by integrating (accumulating) incoming sensory evidence. It is widely thought that
this accumulation is instantiated via recurrent rate-code neural networks. Yet, these networks do not fully explain important
aspects of perceptual decision-making, such as a subject’s ability to retain accumulated evidence during temporal gaps in the
sensory evidence. Here, we utilized computational models to show that cortical circuits can switch flexibly between ‘retention’
and ‘integration’ modes during perceptual decision-making. Further, we found that, depending on how the sensory evidence was
readout, we could simulate ‘stepping’ and ‘ramping’ activity patterns, which may be analogous to those seen in different studies
of decision-making in the primate parietal cortex. This finding may reconcile these previous empirical studies because it suggests
these two activity patterns emerge from the same mechanism.

   

  Contribution to the field

The brain is believed to accumulate sensory evidence to make reliable decisions when exposed to ambiguous sensory stimuli.
Physiological studies found that firing rates of neurons in the lateral intraparietal cortex (LIP) gradually increased until monkeys
made decisions, suggesting that LIP neurons integrate sensory evidence. Then, how do LIP neurons integrate evidence? Multiple
theoretical studies indicated that recurrent networks, in which excitatory neurons are strongly connected with one another, can
account for the ‘ramping’ neural activity in LIP during decision-making. However, recurrent networks are known to lose stored
information when external inputs are removed, which is inconsistent with recent findings that humans retain accumulated
evidence even during temporal gaps in incoming sensory evidence. Here, we propose an alternative neural integrator that can
retain information during temporal gaps. Our integrator is based on general properties of neuron types and their connectivity
patterns in the cortex. Further, it can explain two distinct types of responses in area LIP, which are experimentally observed
during decision-making.
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Abstract 16 

The intrinsic uncertainty of sensory information (i.e., evidence) does not necessarily deter an 17 
observer from making a reliable decision. Indeed, uncertainty can be reduced by integrating 18 
(accumulating) incoming sensory evidence. It is widely thought that this accumulation is instantiated 19 
via recurrent rate-code neural networks. Yet, these networks do not fully explain important aspects of 20 
perceptual decision-making, such as a subject’s ability to retain accumulated evidence during 21 
temporal gaps in the sensory evidence. Here, we utilized computational models to show that cortical 22 
circuits can switch flexibly between ‘retention’ and ‘integration’ modes during perceptual decision-23 
making. Further, we found that, depending on how the sensory evidence was readout, we could 24 
simulate ‘stepping’ and ‘ramping’ activity patterns, which may be analogous to those seen in 25 
different studies of decision-making in the primate parietal cortex. This finding may reconcile these 26 
previous empirical studies because it suggests these two activity patterns emerge from the same 27 
mechanism. 28 

1. Introduction 29 

One of the fundamental operations of the brain is to transform representations of external sensory 30 
stimuli (i.e., sensory evidence) into a categorical judgment, despite the inherent uncertainty of this 31 
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sensory evidence. For instance, we can determine the direction of the wind, even though its 32 
instantaneous direction continuously fluctuates. It is widely thought that this moment-by-moment 33 
uncertainty is minimized by temporally integrating (accumulating) this incoming sensory evidence 34 
(Roitman and Shadlen, 2002; Smith and Ratcliff, 2004; Gold and Shadlen, 2007; Goldman, Compte 35 
and Wang, 2009). Notably, drift diffusion model has shown that noisy integration of evidence dould 36 
explain various experimental observations such as speed-accuracy trade-off regarding the decision-37 
making; see (Ratcliff et al., 2016) for a review. Potential neural correlates of this accumulation process 38 
have been identified in a variety of brain areas, including the lateral intraparietal cortex (area LIP) 39 
(Roitman and Shadlen, 2002; Mazurek et al., 2003a; Gold and Shadlen, 2007), the prefrontal cortex 40 
(Kim and Shadlen, 1999), and the frontal eye fields (Ding and Gold, 2012). In particular, spiking 41 
activity in these brain areas appears to smoothly ‘ramp up’ (accumulate; i.e. linearly increasing activity 42 
over time) prior to a perceptual decision. Further, the rate of this accumulation, which governs the time 43 
to reach a decision threshold (i.e., the time to the perceptual decision), is correlated with the ambiguity 44 
of the sensory evidence: as the evidence becomes less ambiguous (e.g., the instantaneous fluctuations 45 
in wind direction decrease), the rate of the ramping increases (Gold and Shadlen, 2007).  46 

Such neural integration has been modeled in two very different ways, each of which relies on different 47 
coding strategies and mechanisms of integration (Goldman, Compte and Wang, 2009). In the first type 48 
of model, rate-code neural integrators (NI) integrate sensory evidence and represent accumulated 49 
evidence as monotonically increasing (‘ramping’) spiking activity. In this rate-code model, the firing 50 
rates of individual neurons increase over time in response to continuous inputs (Roitman and Shadlen, 51 
2002; Gold and Shadlen, 2007; Wang, 2012). In an alternative model, location-code NIs store 52 
accumulated evidence as the location of highly elevated spiking activity. In such a location-code NI, 53 
the location of these highly active neurons, which are referred to as a ‘bump’, travels through a network 54 
over time (Skaggs et al., 1995; Song and Wang, 2005). That is, the location of bump activity 55 
corresponds to the total amount of accumulated evidence.  56 

Because ramping activity has been found in several studies of perceptual decision-making (Gold and 57 
Shadlen, 2007; Goldman et al., 2009), it is generally believed that a rate-code NI is the natural circuit 58 
candidate for neural integration of sensory information. In the rate-code NI, recurrent excitatory 59 
currents compensate for the leak currents, allowing excitatory neurons to integrate external sensory 60 
inputs (supporting a choice). We note that this rate-code NI has two distinct properties. First, its 61 
dynamics strongly depends on the relationships between the leak and recurrent currents. When the 62 
recurrent currents are precisely balanced with the leak currents, the rate-code NI would become a 63 
lossless NI, which can perfectly integrate sensory evidence and retain the evidence during the temporal 64 
gap of the external evidence. When the recurrent currents are stronger or weaker than the leak currents, 65 
the rate-code NI would overestimate or underestimate the evidence. Earlier studies (Kiani, Churchland 66 
and Shadlen, 2013; Liu et al., 2015) suggested that the brain may utilize lossless integrators, suggesting 67 
that the recurrent currents in the rate-code NI need to be precisely tuned to compensate for the leak 68 
currents. Given the stochastic nature of neural systems, the perfect tuning would be hard to accomplish 69 
(Kiani, Churchland and Shadlen, 2013). Notably, the location-code NI can readily account for the 70 
lossless integration (Song and Wang, 2005). Second, all neurons in the rate-code NI show homogenous 71 
behaviors. During integration, all neurons’ responses would ramp. That is, the rate-code NI cannot 72 
natively explain ‘stepping activity’ recently identified during decision-making.   73 
  74 
Based on the fact that the location-code NI can readily explain the lossless integrator, we hypothesized 75 
that the location-code NI can support perceptual decision-making. To address this hypothesis, we asked 76 
two questions. First, can a cortical circuit support the location-code NI? Using a computational model, 77 
we found that a neural circuit consisting of two major inhibitory neuron types and depressing synapses 78 
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can create bump activity, traveling during the presence of sensory evidence but staying at the same 79 
location during the temporal gap in the flow of sensory evidence. That is, this circuit can serve as a 80 
lossless NI. Second, what kind of predictions can the newly proposed NI make? We found that an 81 
independent population of ‘readout’ neurons could convert evidence stored in the NI to population 82 
ramping activity experimentally observed when they are connected with one another via recurrent 83 
connections. Interestingly, while the population activity monotonically increased, the individual 84 
neurons’ responses show diverse patterns similar to stepping or ramping activities.  85 
 86 
These results raised the possibility that the same mechanisms could underlie both stepping and ramping 87 
activities. Although this prediction is purely derived from computational models, we believe that it 88 
could aid future studies on perceptual decision-making. To the best of our knowledge, there is no direct 89 
evidence supporting location-code NIs associated with perceptual decision-making, but sequential 90 
activations of neurons, consistent with bump activity propagation, have been reported in multiple brain 91 
regions (Ikegaya et al., 2004; Tang et al., 2008; Pulvermuller and Shtyrov, 2009; Harvey, Coen and 92 
Tank, 2012; Xu et al., 2012). In the future, we will study the properties of the newly proposed location-93 
code NI and test its predictions against experimental data.   94 
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2. Results  95 

This section describes how cortical circuits can implement a lossless integrator. In section 2.1.1, we 96 
examine the stability of the rate-code NI during the temporal gap. Section 2.1.2. describes simulation 97 
results suggesting that generic cortical circuits (Fig. 2A), which contain two common types of 98 
inhibitory neurons (Beierlein, Gibson and Connors, 2003; Rudy et al., 2011) and depressing synapses 99 
(York and van Rossum, 2009; Romani and Tsodyks, 2015), can readily realize a lossless (‘perfect’) 100 
location-code NI. In section 2.2., we propose a location-code NI that can have continuous attractors 101 
(Fig. 2C). Finally, in section 2.3., we discuss how evidence accumulated in our integrators can be 102 
converted to decision-related neural responses (decision variables). Interestingly, this readout activity 103 
maps onto two different modes of spiking activity that have been identified during neurophysiological 104 
studies of decision-making: classic ‘ramping’ activity (Roitman and Shadlen, 2002) and newly 105 
identified ‘stepping’ activity (Kenneth W Latimer et al., 2015). 106 

2.1. Cortical circuits can readily implement lossless location integrator 107 

2.1.1. Stability of the rate-code NI 108 

We first evaluated the stability of the rate-code NI using the firing rate model. A rate-code NI was 109 
modelled with a single recurrent population (Goldman, Compte and Wang, 2009) (Equation 1; see the 110 
inset of Fig. 1A).   111 

The firing rate of the rate-code recurrent network obeys Equation 1 (Goldman, Compte and Wang, 112 
2009):  113 

𝜏௠
ௗி೐

ௗ௧
= −𝐹௘ + 𝐹௠௔௫

ଵ

ൣଵା௘షഁ(ೝಷ೐శಶషഇ)൧
                                                                                             (1) 114 

, where Fe and r are the firing rate and recurrent connections, respectively; Fmax is the maximum firing 115 
rate; θ is the spiking threshold; E is the external input; and β represents the strength of stochastic 116 
inputs(Ermentrout and David, 2010). The first term in the right-hand side of Equation 1 represents the 117 
leak current, which corresponds to the subthreshold dynamics of leaky integrate-and-fire 118 
neurons(Miller and Fumarola, 2012). The selected default parameters are Fmax=20, β=1, θ=0.5, r=1 119 
and E=0, unless stated otherwise. We modeled the gain (transfer function; i.e., the number of spikes 120 
that a neuron can generate in response to afferent synaptic activity) with a logistic function(Ermentrout 121 
and David, 2010); the firing rate of this neuron is not zero even when the sum of its synaptic inputs is 122 
smaller than the spiking threshold. 123 

We tested the stability of this network by conducting a bifurcation analysis with the XPPAUT analysis 124 
platform (Ermentrout, 2007). A bifurcation analysis identifies the steady-state solutions, in which a 125 
system can stay indefinitely until perturbed. Moreover, this analysis clarifies whether the steady-state 126 
solutions are stable in response to the perturbations of bifurcation parameters (which, in our analysis, 127 
is the strength of the recurrent connections r and the external inputs E; see the inset of Fig. 1A). In 128 
Figs. 1A and B, the stable and unstable steady-state solutions are shown in red and black, respectively. 129 
As seen in these figures, this recurrent rate-code network (Equation 1) has only two stable attractor 130 
states, in which neurons either fire at their maximum rate (Fmax) or become quiescent. This implies that 131 
if there is a small perturbation in the strength of the recurrent connections or if there are changes in the 132 
external sensory inputs (e.g., a temporal gap in the incoming sensory information, E=0), this network 133 
could lose temporally accumulated information (Kiani, Churchland and Shadlen, 2013).  134 

 135 
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2.1.2. Cortical circuits that can support location-code NI 136 

Cortical circuits have three common properties that are relevant for our model. First, pyramidal (Pyr) 137 
neurons in sensory cortex are topographically organized as a function of their sensory response profiles 138 
via spatial (Hubel and Wiesel, 1962, 1968) and functional (Ko et al., 2013) connections. Second, 139 
cortical circuits also contain parvalbumin positive (PV) and somatostatin positive (SST) inhibitory 140 
interneurons (Rudy et al., 2011). PV neurons have a fast-spiking pattern of activity, whereas SST 141 
neurons have a low-threshold spiking pattern. For our purposes, it is important to note that, although 142 
most inhibitory interneurons are broadly tuned to sensory inputs, the response profiles of SST neurons 143 
can be as sharply tuned as those of Pyr neurons (Ma et al., 2010). Third, via lateral inhibition, SST 144 
neurons inhibit neighboring cortical neurons (Markram et al., 2004; Adesnik et al., 2012; Zhang et al., 145 
2014; Jiang et al., 2015). 146 

Based on previous modelling studies (York and van Rossum, 2009; Romani and Tsodyks, 2015) that 147 
proposed propagating bump activity can be elicited by depressing synapses, we built a cortical network 148 
model (Fig. 2A), in which Pyr neurons interacted with one another through intra-population depressing 149 
synapses (Markram, Wang and Tsodyks, 1998; Reyes et al., 1998; Fuhrmann et al., 2002; Petersen, 150 
2002; Cheetham and Fox, 2010; Lefort and Petersen, 2017) and inter-population unidirectional static 151 
synapses. We refer to this cortical network model as the ‘discrete’ integrator; see Methods for more 152 
details. Transient sensory stimuli (100 ms), which mimicked sensory-driven onset responses in sensory 153 
cortex (Cleland, Dubin and Levick, 1971; De Valois et al., 2000; de la Rocha et al., 2008; Piscopo et 154 
al., 2013), only drove Pyr cells in the first population. In contrast, sustained sensory stimuli (after 100 155 
ms) drove Pyr neurons in all neuronal populations. In our first simulation, we only provided Pyr and 156 
PV neurons with sensory evidence at two discrete time intervals: time=100-300 ms and during 157 
time=800-1000 ms.  158 

As seen in Fig. 3A, the Pyr populations were sequentially activated by sensory stimulation. Further, on 159 
average, both populations of PV neurons were more active during sensory stimulation than during the 160 
temporal gap (Fig. 3B). More importantly, when there was a temporal gap in the sensory evidence (as 161 
indicated by the black double-headed arrow in Fig. 3A), the sequential activation of the network 162 
stopped but activity was maintained by a specific population of Pyr neurons (Pyr population 5 in Fig. 163 
3A). That is, during a temporal gap in the sensory evidence, the network retained the accumulated 164 
information, a finding that is consistent with lossless integration. When we presented the second 165 
sensory stimulus, information resumed propagating through the network as seen by the sequential 166 
activation of Pyr population 6, followed by population 7, etc.  167 

When we explored the network in more detail, we found key roles for the inhibitory neurons and for 168 
the depressing synapses. For example, SST neurons were active only during the temporal gap (Fig. 3C) 169 
and that bump activity did not propagate when we replaced the depressing synapses with static 170 
synapses (Fig. 3D). We also noted that the non-specific feedback inhibition of PV1 neurons play a key 171 
role to activate an appropriate population of neurons (i.e., Pyr population 6 in Fig. 3A, following the 172 
temporal gap). Without this inhibition, when we presented the second sensory stimulus, Pyr population 173 
1 (which was activated by the first initial 100-ms of sensory stimulation) was inappropriately activated. 174 
This altered the amount of accumulated information (Supplemental Fig. 1).  175 

2.2. Continuous location-code neural integrator 176 

The discrete location-code NI (Fig. 2A) has limited precision: the accumulated evidence needs to be 177 
quantized to be stored in the discrete populations. This limitation, however, is not a fundamental 178 
restriction because this discrete network can be generalized to have continuous attractor states by 179 
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distributing Pyr and SST neurons into circular lattices with uniquely assigned coordinates (Fig. 2C). 180 
We call this a ‘continuous lossless integrator’. For convenience, we refer to the direction from lower 181 
to higher coordinates as the clockwise direction and higher to lower as counterclockwise. Two Pyr 182 
neurons were connected in this network if the difference between their coordinates was ≤200. Because 183 
the connections were symmetrical, each Pyr neuron made excitatory synapses with 400 of its 184 
neighboring Pyr neurons.  185 

All Pyr and SST neurons formed non-specific connections with PV1 neurons. PV2 neurons exclusively 186 
provided feedforward inhibition to SST1 neurons. The connections between Pyr neurons and SST 187 
neurons were formed based on their coordinates in the circular lattice. (1) Pyr neurons made one-to-188 
one synaptic (‘topographic’) connections with SST1 and SST2 neurons, when they had the same 189 
coordinates. (2) A SST1 neuron inhibited a Pyr neuron when the (absolute) difference between their 190 
coordinates was ≥200. (3) A SST2 neuron inhibited a Pyr neuron when the coordinate of a Pyr neuron 191 
was lower than that of a SST2 neuron and when the (absolute) coordinate difference was between 400 192 
and 800. Because of this connectivity pattern, the propagation of bump activity in the counter-193 
clockwise direction was dampened, which is possible with symmetrical chain-like recurrent 194 
connections, and only bump activity in the clockwise direction propagated through the network.  195 

In our first analysis, we examined whether our continuous integrator could integrate sensory evidence 196 
(see Table 3 and Supplemental Fig. 2 for model-parameter details). To test this integrator, we first 197 
presented a transient sensory input (time=100-200 ms) to the first 400 Pyr neurons (i.e., those with the 198 
lowest coordinates), followed by a more sustained sensory stimulus (time=100-1000) to all Pyr and PV 199 
neurons.  As seen in Fig. 4A, this transient sensory stimulus elevated the rate of spiking activity 200 
strongly enough to generate bump activity. However, once generated, the feedback inhibition mediated 201 
by the PV1 neurons was strong enough to prevent all other excitatory neurons from spiking during the 202 
presentation of this transient sensory stimulus.  203 

After the offset of this transient input, bump activity propagated to other Pyr neurons in the clockwise 204 
direction (Fig. 4A). Due to the periodic boundary condition, bump activity repeatedly circulated the 205 
integrator. In our model, because excitatory synapses had not fully recovered, when the bump activity 206 
returned to the initial location, it dissipated. As a consequence, the non-specific inhibition mediated by 207 
PV1 neurons became weaker, which, in turn, resulted in Pyr activity at multiple locations (see Pyr cell 208 
activity after 500 ms in Fig. 4A). Concurrently, PV1 and PV2 neurons fired asynchronously (Fig. 4B). 209 
SST1 neurons were quiescent (Fig. 4C), but SST2 neurons, which received excitation from Pyr via 210 
topographic connections, mimicked Pyr activity (Fig. 4D). This SST2 activity prevented bump activity 211 
from propagating in the counterclockwise direction due to its asymmetrical feedback inhibition onto 212 
Pyr neurons.  213 

Next, we tested whether this network could perform lossless integration. Like the discrete neural 214 
integrator, we presented two epochs of sensory stimuli (time=100 and 300 ms and time=800-1000 ms) 215 
that were separated by a period without sensory stimulation. For simplicity, we did not consider the 216 
onset input at 800 ms because this input had no impact on the network dynamics in the discrete 217 
integrator (Fig. 3A and Supplemental Fig. 1). As seen in Fig. 4E, bump activity cascaded through the 218 
network until there was a temporal gap in the sensory evidence. During the temporal gap, bump activity 219 
remained in the same location. Then, it resumed moving from the previous location, as information 220 
was reintroduced, consistent with lossless integration.  221 

As in the discrete integrator, during the temporal gap in sensory information, the PV1 and PV2 neurons 222 
(Fig. 4F) became quiescent. As a result, the inhibition from the PV1 and PV2 neurons to the SST1 223 
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neurons was reduced, which, thereby, increased SST1 activity (Fig. 4G). The firing pattern of SST2 224 
neurons was comparable to that of the Pyr neurons (Fig. 4H). Because the SST1 neurons were 225 
topographically connected to Pyr neurons, the SST1 inhibited non-active Pyr neurons, which prevented 226 
bump activity from propagating to a new location. Together, this transforms the network into a quasi-227 
stable attractor network. 228 

Finally, how sensitive was our model to the strength of the stimulus inputs (i.e., the amount of sensory 229 
evidence)? Neurophysiological experiments have clearly shown that the rate of accumulation of the 230 
sensory evidence is positively correlated with the strength of the stimulus inputs. Further, this rate of 231 
accumulation is accompanied by a decrease in reaction time (Gold and Shadlen, 2007). To test whether 232 
our continuous integrator could account for this correlation between reaction time and stimulus inputs, 233 
we calculated how quickly activity traveled between adjacent Pyr neurons as a function of the strength 234 
(firing rate) of the sensory inputs, which is controlled by α in Equation 3. Indeed, as shown in Fig. 5A, 235 
the travel time and α were inversely correlated. In other words, as strength of the sensory inputs 236 
increased, bump velocity also increased. This finding, in part, supports the correlation between 237 
behavioral reaction times and the strength of sensory evidence; examples of the propagation of bump 238 
activity through the network as a function of different values of α are shown in Fig. 5B. 239 

2.3. Potential links to decision-making: the contribution of elective and exclusive connections 240 
between integrators and readout neurons  241 

Sequential-sampling models, which can successfully account for perceptual decision-making, suggest 242 
that decisions can be made when the accumulated evidence reaches a decision-threshold (Ratcliff and 243 
Smith, 2004; Miller, 2015a). For instance, race models assumes that evidence in support of one of two 244 
categorical choices is integrated independently and that a decision is reached whenever the 245 
accumulated evidence hits a decision-bound (Ratcliff and Smith, 2004; Miller, 2015a). In principle, 246 
our lossless integrator can natively realize this accumulator model, as individual integrators can 247 
independently integrate evidence for available choices.  248 

To address this possibility, we extend the model to perform a 2 alternative-forced-choice task, which 249 
is discussed below. 250 

 2.3.1.  Gradient connections can implement relative thresholds for reaction-time decision-251 
making 252 

 253 

For the reaction-time tasks, observers should be able to readout the amount of integrated evidence at 254 
any time. That is, if the brain relies on location-code NIs, it should be able to compare the locations of 255 
the bumps in the two integrators whenever necessary. This flexible comparison can be realized by 256 
connecting the integrator to readout neurons with ‘gradient connections’. In this gradient connection, 257 
the connection probability linearly increases as a function of the coordinates of integrator’s Pyr 258 
neurons. Pyr neurons in the integrator 1 projected to excitatory neurons in readout neuronal population 259 
1 and inhibitory neurons in readout neuron population 2; integrator 2 is connected to readout neurons 260 
in an analogous manner (Fig. 6A). This gradient connection is consistent with the experimentally 261 
observed connectivity(Perin, Berger and Markram, 2011) suggesting that connection probability 262 
decays over distance. The maximal connection probability p0 in the model can determine the overall 263 
number of connections between the integrator and readout neurons. Because integrator 1 received 264 
stronger sensory inputs (α1=8) than integrator 2 (α2=3), bump activity in the two integrators 265 
propagated at different speeds (Fig. 6B). As seen in Fig. 6C, readout neuron population 1 showed 266 
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greater activity than population 2 until bump activity returned to the initial location due to the periodic 267 
boundary condition. Next, we further asked how the readout neuron neurons’ responses change 268 
depending on input strengths in two ways. First, we fixed the strength of sensory inputs (α1=6 and 269 
α2=1) and varied p0. Fig. 6D shows the difference in the average firing rates between readout neuron 270 
populations. The light color lines show observations in 10 independent simulations, and the thick color 271 
lines, the average over 10 simulations. We found that the onset of readout neuron population 1 is 272 
negatively correlated with p0 (Fig. 6D), suggesting that a faster decision can be made if stronger 273 
connections (i.e., higher p0) are established between location NI and readout neurons. Second, we fixed 274 
p0 and the strength of evidence to integrator 2 (α2=1) but varied the inputs to the integrator 1 (α1). In 275 
our 10 independent simulations (Fig. 6E), we observed that decisions can be made faster if α1- α2 (the 276 
difference in sensory evidence strength between the two choices) becomes stronger, which is consistent 277 
with the negative correlation between the reaction time and the ambiguity of sensory evidence(Gold 278 
and Shadlen, 2007). 279 

 2.3.2. Temporal profile of spiking activity in the readout neurons: stepping versus ramping 280 

The well-described ramping activity in area LIP strongly supports the existence of rate-code NIs 281 
(Roitman and Shadlen, 2002; Mazurek et al., 2003b; Gold and Shadlen, 2007). However, recent studies 282 
have raised an alternative possibility that LIP activity does not smoothly ramp up but instead ‘jumps 283 
or steps’ up to high-activity states during perceptual decisions (Miller and Katz, 2010; Kenneth W. 284 
Latimer et al., 2015). Interestingly, even though individual neurons produce this stepping activity, the 285 
population activity still exhibits ramping activity. To shed some light on the nature of these two forms 286 
of LIP activity, we tested whether the readout neurons, which encode actual decision variables in our 287 
model, can reproduce either ramping or stepping activity by considering a single integrator and readout 288 
neuron population, for simplicity; this single integrator model replicates 100% coherence random-dot 289 
motion trials commonly used to investigate perceptual decision-making (Roitman and Shadlen, 2002; 290 
Mazurek et al., 2003b) 291 

To this end, we tested how well individual and population activities are correlated with time by utilizing 292 
the linear regression analysis. We first tested the correlations between population activities and time 293 
depending on p0. As shown in Fig. 7B, population activities were significantly correlated with time, 294 
and the slope was positive, suggesting that population activities ramp up regardless of p0. The two 295 
examples at p0=0.1 and 1.0 confirmed that population activities ramped up (Figs. 7C and D). On the 296 
other hand, individual neurons showed strikingly different behaviors depending on p0 (Fig. 7E). When 297 
p0 was higher than 0.7, individual neuronal activity was significantly (p<0.05) correlated with time. 298 
Notably, as p0 decreased, p-values became bigger. That is, individual cell activity was not significantly 299 
correlated with time, when p0 is low. To further test this notion, we compared the p-values of the 300 
regression analysis when p0=0.1 and when p0=1.0. When p0=1.0, the firing rates of most readout 301 
neurons (313 out of 400) were significantly correlated with time (p<0.05), but when p0=0.1, only a 302 
fraction of neurons (6 out of 400) showed significant correlation (Fig. 7F). The responses of 5 randomly 303 
chosen neurons confirmed that individual neurons showed transient activity (Fig. 7G) when p0 =0.1 304 
but showed ramping activity when p0=1.0 (Fig. 7H).  305 

To this end, we tested the correlations 1) between individual neuronal activities and time and 2) 306 
between population activities and time by utilizing the linear regression analysis. The stepping activity 307 
model suggests that population activities, but not individual neuronal activities, are positively 308 
correlated with time. In contrast, the ramping activity model suggests that both population and 309 
individual activities are positively correlated with time. We first tested the correlations between 310 
population activities and time depending on p0. As shown in Fig. 7B, population activities are 311 
significantly correlated with time, and the slope is positive, suggesting that population activities ramp 312 
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up regardless of p0. The two examples at p0=0.1 and 1.0 confirmed that population activities ramped 313 
up (Figs. 7C and D).   314 

On the other hand, individual neurons showed strikingly different behaviors depending on p0 (Fig. 7E). 315 
When p0 was higher than 0.7, individual neuronal activity was significantly (p<0.05) correlated with 316 
time, and their slopes were positive, suggesting that individual spiking activity also ramped up. 317 
Notably, as p0 decreased, the slopes decreased, and p-values became bigger. That is, individual cell 318 
activity was not linearly correlated with time. Even when it was, it did not, on average, monotonically 319 
increase over time. To further test this notion, we compared the p-values of the regression analysis 320 
when p0=0.1 and when it was p0=1.0. When p0=1.0, the firing rates of most readout neurons (313 out 321 
of 400) were significantly correlated with time (p<0.05), but when p0=0.1, only a fraction of neurons 322 
(6 out of 400) showed significant correlation (Fig. 7F). The responses of 5 randomly chosen neurons 323 
confirmed that individual neurons showed transient activity (Fig. 7G) when p0 =0.1 but showed 324 
ramping activity when p0=1.0 (Fig. 7H).  325 

 326 

These results suggest that individual neurons’ responses are not necessarily correlated with population 327 
activities, which is the hallmark of the stepping activity model. Inspired by these results, we asked if 328 
readout neurons are capable of replicating stepping-like responses. In the stepping activity model 329 
(Durstewitz and Deco, 2008; Miller and Katz, 2010; Kenneth W. Latimer et al., 2015), neurons switch 330 
rapidly between quiescent and active states, and their firing rates are stable (i.e., constant over time) in 331 
both quiescent and active states. To address this question, we first examined if readout neurons would 332 
undergo rate changes during decision-making (i.e., integration of evidence). Specifically, we estimated 333 
the time courses of firing rates using 25 ms time bins and then split them into quiescent and active 334 
periods. In the experiments, we estimated the mean firing rate over all time bins and determined the 335 
time (T) when the firing rate crosses the mean value for the first time. The quiescent period is between 336 
100 ms and T when the firing rate crosses the mean value. The active period is between T and 550 ms. 337 
Fig. 8A shows the changes in individual neurons’ firing rates between quiescent and active states 338 
depending on pconn (i.e., the connection probability of recurrent connections within the readout neuron 339 
population), suggesting that individual neurons underwent rate changes during evidence integration. 340 
That is, the readout neurons may have binary states.  341 

Next, we tested if the readout neurons abruptly switched from quiescent to active states, and if they 342 
have constant firing rates in both quiescent and active states. To this end, we estimated the time course 343 
of firing rates using 50 ms bins (to obtain smoother responses) and fitted them to the sigmoid function 344 
(Eq. 2).  345 

𝑆(𝑥) =
௖

ଵା௘షೌ(ೣష್) + 𝑑                                                                                                                          (2) 346 

, where a, b, c and d are parameters optimized during curve-fitting.   347 

After fitting individual neurons’ firing rates into the sigmoid function, we estimated R2 and selected 348 
neurons with R2>=0.85. When p0=0.1 and Pconn=0.15, 12 readout neurons showed stepping-like 349 
responses (Fig. 8B). The number of neurons, showing stepping-like responses, grew when pconn was 350 
increased to 0.21 (Fig. 8C). When pconn was strengthened further (for instance, pconn=0.25), some 351 
neurons showed multiple activity states (rather than binary) or the transitions from quiescent to active 352 
states took long (Fig. 8D). That is, some neurons’ responses morphed into ramping-like responses. 353 
Interestingly, we found that the number of potential stepping-response (PSR) neurons increased when 354 
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p0 increased (Fig. 8E). To better understand how p0 and pconn influence readout neurons’ response 355 
patterns, we estimated the number of neurons with R2 higher than 0.85 (i.e., PSR neurons that can be 356 
explained well by the sigmoid function). We made two observations (Fig. 8F). First, the number of 357 
PSR neurons initially increased as pconn increased but started decreasing after pconn~ 0.28. Indeed, when 358 
the pconn was too high, most of neurons’ responses were ramping. Second, p0 increased the number of 359 
PSR neurons, when pconn was lower than 0.25. These results raised the possibility that decision neurons 360 
could show either stepping or ramping activities depending on the strength of evidence (modeled with 361 
p0 in the model) and recurrent interactions between them (modeled with pconn in the model).  362 

3. Discussion 363 

Perceptual decision-making relies on the accumulation of sensory evidence (i.e., decision-variables) 364 
that is extracted from ambiguous sensory stimuli (LaBerge, 1962; Ratcliff, 1978; Roitman and Shadlen, 365 
2002; Mazurek et al., 2003a; Ratcliff and Smith, 2004; Smith and Ratcliff, 2004; Miller, 2015b). It is 366 
generally thought that perceptual decision-making is instantiated through rate-code neural integrators 367 
(NIs), which are based on recurrent inputs to compensate for the leak currents (Goldman, Compte and 368 
Wang, 2009; Wang, 2012). However, the degree to which rate-code NIs can explain perceptual 369 
decision-making can be limited. For example, rate-code NIs become unstable when there is a temporal 370 
gap in the flow of incoming sensory evidence (Fig. 1), whereas behavioral studies indicate that 371 
participants act as ‘perfect/lossless’ integrators and are not affected by these temporal gaps (Kiani, 372 
Churchland and Shadlen, 2013; Liu et al., 2015). 373 

How then can the brain make reliable decisions even with temporal gaps? We propose that the cortex 374 
can readily use the location of bump activity to represent the amount of presented sensory evidence 375 
(Skaggs et al., 1995; Song and Wang, 2005); see below. In our simulations, bump activity in the 376 
integrator progressed through the network when sensory inputs were provided but stayed at the same 377 
location in the absence of sensory information. The location of the bump was stable due to the 378 
inhibition of SST cells (Figs. 3 and 4). This indicates that our integrator, unlike traditional rate-code 379 
NIs, can account for the robustness of perceptual decision-making during temporal gaps in sensory 380 
evidence.  381 

3. 1. Comparison to other location code NIs  382 

In terms of function, our model reproduces the findings of previously reported location-code NIs, 383 
which modeled head-direction neurons encoding the direction of an animal’s head relative to its body 384 
and independent of its location in the environment(Song and Wang, 2005). However, the underlying 385 
mechanisms between our NI and previously described ones are quite distinct.  386 

In previous location-code NIs, the shift in the location of bump activity was realized by so-called 387 
“rotation” neurons, which employed either strictly excitatory neurons (Skaggs et al., 1995) or strictly 388 
inhibitory neurons (Song and Wang, 2005); these rotation neurons are located in the portion of the 389 
thalamus that receives inputs from the vestibular system. In contrast, we found that a cortical circuit, 390 
which consisted of excitatory pyramidal neurons and different types of inhibitory interneurons, can 391 
readily implement a location-code NI.  392 

More specifically, two common inhibitory cortical neurons (Rudy et al., 2011) –PV and SST 393 
interneurons– made distinct contributions to this operation. PV neurons, which provided nonspecific 394 
feedback inhibition to pyramidal neurons (Ma et al., 2010; Bock et al., 2011), ensured that bump 395 
activity existed only at a single location. On the other hand, SST neurons mediated lateral inhibition 396 
and transformed the network into an effective attractor network capable of maintaining accumulated 397 
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evidence even during temporal gaps in sensory information (Figs. 3C and 4G). We note that this 398 
theoretical finding is consistent with the empirical finding that SST cells are selectively activated 399 
during a delay period when a stimulus is removed and an animal needs to remember task-relevant 400 
information (Kim et al., 2016). In contrast to the role that interneurons and their inhibitory synapses 401 
played in our network model, depressing excitatory synapses made bump activity propagate through 402 
the network (Figs. 3D). Together, our simulation results suggest that neurons and synapses in the 403 
neocortex are indeed suitable for controlling and maintaining the propagation of bump activity.  404 

3. 2. Connections to the rate-code NI 405 

Earlier theoretical and computational studies proposed the rate-code Nis that are robust to the 406 
imbalance between leak currents and feedbacks; see(Koulakov et al., 2002; Goldman et al., 2003; 407 
Cain et al., 2013). That is, our location-code NI is similar to these robust integrators in terms of 408 
functions. However, the aim of our study is to gain insights into the recently proposed stepping 409 
activity model (Kenneth W Latimer et al., 2015; Zoltowski et al., 2019) and its potential links to the 410 
ramping activity. In our model, ramping or stepping activity can emerge depending on afferent inputs 411 
from a location-code NI. Dense gradient connections (i.e., high p0) induce the ramping activity, 412 
whereas sparse gradient connections (i.e., low p0) induce the stepping activity, raising the possibility 413 
that the two seemingly different models could represent the two faces of the same coin.  414 

Further, our simulation results suggest that the recurrent readout neuron populations can convert 415 
accumulated evidence in the location-code NI into ramping or stepping activities. That is, the 416 
location-code NI, providing a ‘neural memory buffer’, may be complementary to the rate-code NI 417 
and then enable to the brain retain accumulated evidence during the temporal gap. Then, the question 418 
is, why do we detect ramping activity more frequently than stepping activity? This may be because 419 
the memory buffer provided by the location-code NI is not always necessary. If the temporal gap 420 
rarely occurs, the brain need not maintain the memory buffer (i.e., the location-code NI). Instead, the 421 
rate-code NI alone can sufficiently perform reliable decision-making most of the time. Notably, the 422 
common random dot motion protocol does not contain temporal gaps.  423 

3. 3. Empirical evidence for location-based NI relying on bump activity 424 

Sequential activation, consistent with bump activity propagation in our model, has been observed in 425 
multiple brain regions (Tang et al., 2008; Pulvermuller and Shtyrov, 2009) including the visual 426 
cortex(Ikegaya et al., 2004; Sato, Nauhaus and Carandini, 2012; Xu et al., 2012), parietal 427 
cortex(Harvey, Coen and Tank, 2012) and frontal cortex (Seidemann et al., 1996).  Notably, Harvey 428 
et al.(Harvey, Coen and Tank, 2012) found that posterior parietal cortex neurons were sequentially 429 
activated during decision-making, raising the possibility that the location-code NI can exist in 430 
cortical regions like area LIP. That is, it is plausible that both location-code NIs and readout neurons 431 
coexist in area LIP, in which both stepping and ramping activities have been observed. It should be 432 
noted that the gradient connections in our model, which are necessary to account for stepping and 433 
ramping activities, are consistent with experimental findings (Perin, Berger and Markram, 2011) that 434 
the connection probability decreased as the distance between neurons.  435 

3. 4. Limitation of our model and concluding remarks 436 

In this study, we only considered a 2-choice task, but it should be noted that the location-code NI can 437 
also be used for multiple-choice tasks. If multiple choices are available, the evidence supporting each 438 
choice could be tracked by an independent location-code NI. When the decisions are required, the 439 
readout neurons could determine the best choice using the winner-take-all mechanism.  440 
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While the determination of the exact mechanisms behind any cognitive functions remains difficult, we 441 
would like to underscore that our model demonstrates that cortical circuits can natively switch between 442 
two seemingly distinct states, the stable steady state (e.g., bump activity maintenance) and the 443 
sequential activation state (e.g., bump activity propagation). We are not arguing that location-code NIs 444 
preclude the existence of rate-code Nis in neural systems. As they have distinct pros and cons, we 445 
speculate that location- and rate-code NIs are rather complementary and can be selected depending on 446 
cognitive demands. We also note 1) that, to the best of our knowledge, there is no direct evidence 447 
supporting the location-code NI associated with perceptual decision-making and 2) that our model has 448 
a complex structure with fine-tuned parameters, and thus it remains unclear if our model is 449 
physiologically realizable. We will further study the properties of the newly proposed location-code 450 
NI to address these limitations.   451 

 452 

 453 

 454 

  455 

In review



   Cortical lossless neural integrator 

 
13 

4. Methods 456 

In this study, we developed lossless neural integrators, which were implemented within the NEST 457 
environment (Gewaltig and Diesmann, 2007), a peer-reviewed, freely available simulation package. 458 
All neurons in the model were leaky integrate-and-fire (LIF) neurons. The excitatory and inhibitory 459 
neurons within an integrator formed excitatory and inhibitory connections onto a set of ‘target’ 460 
neurons. All integrator neurons and target neurons had identical internal dynamics; specifically, each 461 
presynaptic spike induced an abrupt increase in a neuron’s membrane potential that decayed 462 
exponentially. These neurons were implemented using the native NEST model iaf_psc_exp (Gewaltig 463 
and Diesmann, 2007). Table 1 shows the exact parameters used for the neurons and synapses in both 464 
neural integrators.  465 

4.1. The s4tructure of the discrete integrator 466 

The structure of the discrete integrator is summarized in Figs. 2A and B. As seen in Fig. 2A, the discrete 467 
integrator consisted of 19 different neuronal populations. 17 of these neuronal populations contained 468 
400 pyramidal (Pyr) and 16 somatostatin (SST) model neurons. Within each of these 17 populations, 469 
Pyr neurons formed excitatory synapses with both Pyr and SST neurons. These 17 populations were 470 
topographically organized: Pyr neurons within a population had unidirectional excitatory connections 471 
with the adjacent population (e.g., population 2 projected to population 3 but not back to population 472 
1). We had a periodic boundary condition in which the (last) population 17 connected to the (first) 473 
population 1; see Fig. 2B. In contrast, SST neurons formed inhibitory connections with Pyr neurons in 474 
all of the other populations. Recurrent connections between Pyr neurons within a particular population 475 
had depressing synapses (Markram, Wang and Tsodyks, 1998; Reyes et al., 1998; Fuhrmann et al., 476 
2002; Petersen, 2002; Cheetham and Fox, 2010; Lefort and Petersen, 2017), but all of the other synaptic 477 
connections were static. We implemented these depressing synapses using the Tsodyks-Markram 478 
model included in the NEST distribution (Table 1).  479 

The two remaining populations each had 1088 parvalbumin (PV) neurons. All of the Pyr neurons had 480 
excitatory connections with the PV neurons in one population (PV1) but not with those in the second 481 
PV population (PV2). Both PV1 and PV2 neurons formed non-specific inhibitory connections with Pyr 482 
and SST neurons; see Table 2 for the connection probability. These two PV populations simulated 483 
feedback and feedforward inhibition between Pyr neurons. 484 

4.2. The structure of the continuous integrator 485 

The continuous integrator was composed of a population of Pyr neurons, two PV populations (PV1 and 486 
PV2), and two populations of SST neurons (SST1 and SST2); see Fig. 2C. Table 3 lists the parameters 487 
of these neuronal populations; see supplemental Fig. 2 for visual presentation of synaptic connections 488 
between neuron populations. In this network, 4000 Pyr, SST1 and SST2 neurons were distributed in a 489 
circular lattice, each of which had unique coordinate between 1-4000. We arbitrarily set the coordinates 490 
to increase in the clockwise direction. The neuronal numbers were arbitrary and were not constrained 491 
by the ratio of excitatory to inhibitory neurons, which is roughly 4:1. It should be noted that it is 492 
straightforward to extend this network model to include more excitatory neurons. For example, instead 493 
of a single Pyr neuron at each coordinate, a small population of Pyr neurons at each coordinate can be 494 
instantiated without changing any of the details of the network structure.  495 

Pyr neurons were mutually connected, via excitatory connections, to their neighboring Pyr neurons 496 
when the difference between their coordinates was ≤200, which is equivalent to a distance-dependent 497 
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connection probability (Perin, Berger and Markram, 2011). These connections were established with a 498 
periodic boundary condition: Pyr neuron 4000 and Pyr neuron 1 were mutually connected.  499 

Pyr neurons interacted with the PV1, SST1 and SST2 populations in distinct ways. First, the pattern of 500 
connectivity between the Pyr and PV1 populations was randomly generated. Second, a Pyr neuron 501 
projected only to those SST1 and SST2 neurons that had the same coordinates (i.e., a one-to-one 502 
topographic mapping). The connection strength was designed to be just strong enough for a single Pyr 503 
“spike” to cause a SST1 or SST2 neuron to fire (Table 3), like a single layer-5 pyramidal-neuron spike 504 
can induce SST-expressing Martinotti neurons to fire (Silberberg and Markram, 2007). Finally, SST1 505 
and SST2 neurons also had inhibitory connections with Pyr neurons but had different connectivity rules. 506 
SST1 neurons formed connections only with those Pyr neurons in which the SST2-and-Pyr difference 507 
was ≥200. In contrast, SST2 neurons formed connections only with those Pyr neurons with lower 508 
coordinate values.  509 

Other important model details are that PV2 neurons randomly inhibited SST1 neurons; the connection 510 
probability is shown in Table 3. Further, the PV1 and PV2 populations were independent of this circular 511 
lattice (see Fig. 2C). In our continuous integrator, all excitatory synapses were depressing, whereas all 512 
inhibitory synapses were static. 513 

4.3. External inputs for both integrators 514 

The excitability of each neuron depended on the sum of its synaptic inputs from all of the other neurons 515 
in the network and from external inputs. Tables 2 and 3 show the neuron-specific rates of these external 516 
inputs, which were modeled with Poisson spike trains. In the model, there were ‘background’ and 517 
‘stimulus inputs’ (i.e., sensory information). Background inputs were independent of stimulus 518 
presentations and mimicked afferent inputs from other cortex (Potjans and Diesmann, 2014). Stimulus 519 
inputs had both ‘transient’ and ‘sustained’ modes of activity. The transient mode represented the 520 
transient onsets of neural activity that have been observed in the sensory systems including retina, 521 
lateral geniculate nucleus and cortex (Cleland, Dubin and Levick, 1971; De Valois et al., 2000; de la 522 
Rocha et al., 2008; Piscopo et al., 2013). We assumed that this transient activity helped to ensure that 523 
bump activity was always initiated at the same location in the network. Transient inputs (duration: 100 524 
ms) were introduced to the first 400 and 100 Pyr neurons in the discrete and continuous integrators, 525 
respectively. In contrast, the sustained sensory inputs formed projections with all Pyr, PV1 and PV2 526 
neurons during the entire stimulus. The frequency (Isustained) of the sensory inputs to PV1 neurons is 527 
given in Equation 3, and Pyr neurons received sensory inputs equivalent to 4×Isustained. 528 

𝐼௦௨௦௧௔௜௡௘ௗ = 400 + 𝛼 × 100(𝐻𝑧)                                                                                                 (3) 529 

4.4. Travelling time for the bump 530 

Using the continuous integrator, we tested the relationship between the propagation speed of the bump 531 
and the strength of the sensory input by calculating the time course of the last 400 Pyr neurons (i.e., 532 
those with 400 highest coordinates). Specifically, we generated an event-related spike histogram using 533 
non-overlapping 10-ms bins of spiking data. ‘Travelling time of the bump’ was defined as the time, 534 
relative to stimulus onset, when the number of spikes in a single bin exceeds the sum of the mean plus 535 
two standard deviations of the number of spikes during the simulation period. 536 

5. Code availability.  537 

The simulation code is available upon request (contact JHL at giscard88@gmail.com) without any 538 
restrictions and will be publicly available.  539 
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 722 

10. Tables  723 

 724 

Table 1: Neural parameters for neurons and synapses. When a spike arrived, the membrane 725 
potential instantly jumped to a new value, which was determined by its capacitance (C) and time 726 
constant (τm). When the membrane potential was higher than the spike threshold, the membrane 727 
potential was reset (Vreset). Without any external input, the membrane potential relaxed back its the 728 
resting membrane potentials (EL). Synaptic events decayed exponentially with a 2-ms time constant 729 
(τsyn). All synapses had a 1.5-ms delay unless otherwise stated; the only exception is given in Table 2. 730 
For depressing synapses, we selected the parameters (U and τref) given below.  731 

Neuronal Parameters Synaptic parameters 

C 

(membrane capacitance) 

1 pF τsyn  2.0 ms 

Vth 

(spike threshold) 

20 mV delay 1.5 

τm 

(Membrane time constant) 

20 ms U 0.2 

EL 

(resting membrane potential) 
0 mV τref 200 ms for discrete integrator 

500 ms for continuous integrator 

Vreset 

(reset after spiking) 

0 mV   

 732 

 733 

In review



   Cortical lossless neural integrator 

 
21 

Table 2: The parameters of the discrete integrator. We connected populations by specifying 734 
connection probabilities and synaptic connection strengths. The first value in the parentheses is the 735 
connection probability. The connection strengths followed Gaussian distributions. The mean values of 736 
these distributions are the second value in the parentheses, and the standard deviations were 10% of 737 
the mean. The excitatory and inhibitory connections could not be less than or greater than 0, 738 
respectively; when they violated this condition, we set them to 0. We note that the connection strengths 739 
greatly vary depending on the pairs of neurons. For example, the inhibitory connections from PV2 to 740 
SST are 10 times stronger than those from PV1 to SST.   741 

 Total Number Background inputs (Hz) Stimulus input (Hz; 
sustained) 

Pyr 6800 2,800 2000 

PV1 1088 4,500 2000 

PV2 1088 N/A 2000 

SST 544 3,200 N/A 

Connectivity within populations (connection probability, strength in pA) 

PyrPyr (1.0, 1.8) PyrSST (0.4, 0.96) 

PV1PV1 (0.3, -0.72) PV1PV1 (0.1, -0.72) 

Connectivity across populations (connection probability, strength in pA) 

PyrPyr (0.2, 0.12) *delay 10 ms PV2SST (1.0, -6.0) 

PyrPV1 (0.2, 0.12) SSTPyr (1.0, -4.8) 

PV1Pyr (0.2, -1.08) SSTPV1 (0.3, -0.6) 

PV1SST (0.3, -0.6)   

Connection strength for background and stimulus inputs in pA 

Pyr 0.12 PV2 0.36 

PV1 0.12 SST 0.12 

Onset stimulus input 

Target Pyr neurons Firing rate 1000 Hz 
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in population 1 

 742 

 743 

Table 3: The parameters of the continuous integrator. Due to the lack of population structure, we 744 
connected neurons by specifying the number of presynaptic neurons to each neuron type. The 745 
frequency of stimulus inputs given below is the default value used unless stated otherwise; see also 746 
Equation 3. The first value is the number of presynaptic neurons, and the second value is the connection 747 
strength in pA. The excitatory and inhibitory connections could not be less than or greater than 0, 748 
respectively; when they violated this condition, we set them to 0. The background inputs to all neurons 749 
in the continuous integrator are mediated by synapses whose strength are 0.13 pA. 750 

 Total Number Background inputs (Hz) Stimulus input (Hz) 

Pyr 4000 3,850 4,800 

PV1 1000 3,850 1,200 

PV2 1000 3,000 1,200 

SST1 4000 2,000 N/A 

SST2 4000 2,000 N/A 

Connectivity (Number of presynaptic neurons, strength in pA) 

PyrPyr (400, 0.52) PV1SST1 (150, -0.78) 

PyrPV1 (400, 0.52) PV2SST1 (1000, -0.78) 

PyrSST1 (1, 11.7) SST1Pyr (3600, -0.78) 

PyrSST2 (1, 11.7) SST1PV1 (1200, -0.78) 

PV1Pyr (160, -1.87) SST2Pyr (400, -0.78) 

PV1PV1 (160, -0.78)   

 751 

11. Captions 752 
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 753 

Figure 1: The bifurcation analysis of rate- and location-code NIs. (A) and (B), Bifurcation analyses 754 
with the recurrent connections (r) and the external inputs (E) as bifurcation parameters for the recurrent 755 
rate-code network model, respectively; the schematics this network model is shown in the inset of (A). 756 
Red and black lines represent stable and unstable steady solutions, respectively. Pop in the figure 757 
denotes a neuronal population.  758 

Figure 2: The structure of the two versions of our integrator. (A), Connectivity between all 19 759 
neuronal populations in the discrete integrator. (B), Interconnectivity between the 17 Pyr-SST 760 
populations; see Methods and Tables 1 and 2 for more details and parameters. Red and blue arrows 761 
indicate excitatory and inhibitory connections within the network model, respectively. Dashed and 762 
thick black arrows represent onset and sustained stimulus inputs, respectively. (C), Structure of 763 
continuous integrator. The five neuronal populations (Pyr, PV1, PV2, SST1, and SST2) interact with 764 
each other via connections shown in the figure. The thin red arrows and blue arrows represent the 765 
excitatory and inhibitory connections between individual neurons, respectively. In contrast, the thick 766 
arrows (including red and blue) show connections between the neuronal populations. All connections 767 
between populations are randomly established. Sensory inputs are introduced to Pyr, PV1 and PV2 768 
(dashed arrows). Periodic boundary condition is used to connect Pyr cells, as shown in the red arrow; 769 
see Methods and Table 3 for more details and parameters. 770 

Figure 3: The responses of populations of the discrete integrator. (A), Spiking activity of Pyr 771 
neurons in all 17 neuronal populations; each population had 400 Pyr neurons. Each row in the plot 772 
shows the spike times of an individual Pyr neuron. Each of the 8 populations are shown in different 773 
colors; see legend for the color codes of a subset of these populations. Although the model contains 17 774 
populations, only 8 populations were activated during our simulations, which we display here. The red 775 
and black arrows show sensory-stimulus periods and the temporal gap between them, respectively. (B), 776 
PV1 and PV2 activity during the sensory-stimulus periods and the temporal gap between both. Both PV 777 
populations contained 1088 PV neurons. (C), SST neuron activity in all 8 populations; there are 16 778 
SST neurons in each population. The same color scheme is used as in (A), and during the temporal 779 
gap, active SST and Pyr neurons have the same color, indicating that active SST and Pyr neurons 780 
belong to the same population. (D) Pyr activity when all depressing synapses are replaced with static 781 
ones.  782 

Figure 4: Integration of sensory inputs with and without temporal gaps. (A)-(D), Spiking activity 783 
in Pyr, PV (PV1 and PV2), SST1 and SST2 neurons in response to constant sensory input. The model 784 
received two types of sensory inputs (the onset inputs marked by yellow arrows and the sustained 785 
inputs marked by greed arrows). The onset inputs are introduced to 400 neurons simultaneously, and 786 
the sustained inputs are introduced to all neurons. During stimulus presentation (100-1000 ms, marked 787 
as the green arrow), the location of bump propagates through the circular lattice: PV neurons fire 788 
asynchronously. SST1 neurons (shown in C and G) are quiescent, whereas SST2 activity (shown in D 789 
and H) mimics Pyr activity. (E)-(H), Raster plots of Pyr, PV, SST1 and SST2 activity, respectively, 790 
when there was a temporal gap between stimulus presentations. During the gap (300-800 ms, marked 791 
by the black arrow), SST1 neurons became active (Fig. G), and the bump activity of Pyr neurons stayed 792 
at the same location.  793 
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Figure 5: The continuous integrator was sensitive to the strength of the sensory inputs. (A), The 794 
travel time between consecutive Pyr neurons was inversely dependent on the strength of the sensory 795 
inputs; α represents the strength of the inputs to both Pyr and PV1 cells (Equation 3). In the experiment, 796 
we constructed 10 independent models, each of which was randomly constructed with the same rule 797 
and received independently created background noises. We display the mean values and standard 798 
deviations calculated from these 10 models. (B), Examples of propagating bump activity as a function 799 
of different input strength (i.e., different values of α in Eq. 3). 800 

Figure 6: Readout schemes for decisions. (A), We assumed that there are two continuous integrators 801 
(top and bottom of the schematic) and that each Pyr neuron in each continuous integrator projected to 802 
excitatory neurons (E) in one of the two readout neuronal populations. The connection probability 803 
(p=

௣బ

ସ଴଴଴
𝑛) increased, as the coordinate (n) of Pyr neurons increased. p0 is the maximal connection 804 

probability. In this simulation, both E and I neurons received 200-Hz external inputs via synapses 805 
whose strength was 1.3 pA.  (B), Raster plot of the two integrators. The first and second integrators are 806 
represented in red and blue, respectively. Because the first integrator had stronger stimulus inputs 807 
(α1=8) than the second one (α2=3), the bump activity propagated faster in the first integrator than in 808 
the second. (C), Raster plots of the two populations of readout neurons, shown in red and blue, 809 
respectively. (D), Time course of firing rate difference between readout neurons depending on p0. In 810 
the experiments, we used 25 ms non-overlapping bins to estimate the time courses of population 811 
activity in 10 independent simulations in which α1=6, α2=1. In each simulation, we estimated the 812 
differences in the firing rates between readout neuron populations 1 and 2, which are shown in light 813 
red, green and blue lines. The thick red, green and blue lines represent the average firing rate over 10 814 
experiments. The error bars denote the standard errors estimated from 10 experiments. The red, blue 815 
and green colors represent the results with p0=0.3, 0.6 and 0.9, respectively. (E), The time course of 816 
the firing rate difference between readout neurons depending on stimulus input strengths. We varied 817 
α1 in 10 experiments and estimated the difference in firing rates. As in (D), the light color lines 818 
represent the results in the individual experiments, and the thick lines represent the average over 10 819 
experiments. The error bars denote the standard errors estimated from 10 experiments. 820 

 821 

Figure 7: Readout neuron activity with gradient connections. (A), The structure of a single set of 822 
integrator and readout neurons. (B), Linear regression analysis of the average firing rate of 400 E 823 
readout neurons depending on p0. To see if the population activity ramps up, we used the linear 824 
regression analysis to test if the population activity is correlated with time. The positive slopes indicate 825 
the ramping activity. That is, this panel suggests that the population activity of readout neurons ramps 826 
in a wide range of p0. (C), Time course of population activity with p0=0.1 (D), the same as (C) but with 827 
p0=1.0. Panels (C) and (D) confirm the linear regression analysis in (B). (E), Linear regression of 828 
individual neuron activity depending on p0. Unlike the analysis shown in (B), we tested if individual 829 
neurons’ responses are correlated with time. In the panel, we showed the mean values from 400 readout 830 
neurons. This panel suggests that individual neurons’ responses are correlated with time only when p0 831 
is sufficiently high.  (F), Histograms of p-values from 400 readout neurons’ responses. In this panel, 832 
we compared two extreme cases, p0=0.1 and 1.0. As expected, most of the neurons’ responses are 833 
correlated with time when p0=1.0 (G), Time course of individual neuronal activity with p0=0.1 (H), 834 
the same as (G) but with p0=1.0. 835 

Figure 8: The individual readout neurons’ responses depending on p0 and pconn. (A), Individual 836 
neuron responses in the quiescent and active periods when p0=0.1 when pconn=0.1, 0,15, 0,2 and 0,25. 837 
(B), Firing rates of neurons that can be explained by the sigmoid function when p0=0.1 and pconn=0.15. 838 
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For clarity, we split the neurons depending on the maximum firing rates. The neurons shown in the 839 
same panel share the same maximum rate. Individual neurons are displayed in different colors.   840 
Additionally, we added a random offset value (between -3 and 3) to each neuron’s firing rates to show 841 
all neurons more clearly. (C) the same as (B), but p0=0.1 and pconn=0.21. (D), the same as (B), but 842 
p0=0.1 and pconn=0.25. (E), the same as (B), but p0=0.15 and pconn=0.15. (F), Number of neurons, whose 843 
responses can be explained by the sigmoid function. They are referred to as PSR neurons in the main 844 
text.   845 
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